

Twilio Cookbook
Second Edition

Over 70 easy-to-follow recipes, from exploring the key
features of Twilio to building advanced telephony apps

Roger Stringer

 BIRMINGHAM - MUMBAI

Twilio Cookbook
Second Edition

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Second edition: March 2014

Production Reference: 1200314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-065-4

www.packtpub.com

Cover Image by Rick Cartledge (rick_bc@shaw.ca)

Credits

Author
Roger Stringer

Reviewers
Zakir Hyder

Tim Rogers

Prateek Sachdev

Acquisition Editors
Joanne Fitzpatrick

Sam Birch

Content Development Editor
Poonam Jain

Technical Editors
Novina Kewalramani

Shweta S. Pant

Copy Editors
Alisha Aranha

Mradula Hegde

Gladson Monteiro

Project Coordinator
Sanchita Mandal

Proofreaders
Amy Johnson

Bob Phillips

Indexer
Rekha Nair

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

About the Author

Roger Stringer has been a PHP developer since 2001 and has been working on projects of
all sizes for companies all over the world. He has formed several start-ups over the years and
most of them have been powered by Twilio to provide services.

When not working on the web, Roger can be found reading, cooking, and spending time with
his daughter, Kaitlyn, at the local farmer's markets.

Roger is the founder of The Interviewer, a Twilio-powered startup, which makes interviewing
more efficient by helping with scheduling, contact management, and conducting and
recording interviews.

I'd like to thank my wife, Patsy, and our daughter, Kaitlyn, for having the
patience to let me get this book written, as I spent many hours behind a
computer typing.

Also, I wish to thank Rob and the Twilio crew for answering any questions
that came up as I worked on the various topics covered.

I also want to thank Jason and the crew at Copter Labs and Gary and the
VeriCorder team.

About the Reviewers

Zakir Hyder graduated in Computer Science from Southeast University and is pursuing his
MS in Computer Science and Engineering from North South University in Bangladesh. He has
been building websites and social networking apps since 1999. He has also been developing
Facebook apps since 2007. He gave his talk at Facebook Developer Garage Dhaka. He has
developed websites that were deeply integrated with Facebook, Twitter, LinkedIn, and YouTube
APIs. He writes tests with RSpec, Cucumber, and Capybara with Selenium. He follows Agile
methodologies of software development and is especially fond of scrum and standup.

Besides his full-time job, Zakir writes his blog at blog.jambura.com. You can follow him on
Twitter @zakirhyder and on his LinkedIn profile at bd.linkedin.com/in/zakirhyder.
He lives in Bangladesh with his wife, Fathema, and his son, Arham. Currently, he is a senior
software engineer at somewherein Ltd. (http://www.somewherein.net/). He has also
worked on Getting Started with Citrix® CloudPortal, Packt Publishing.

I would like to thank my wife for taking care of our three-month old boy while
I reviewed the book. I'd also like to thank Sanchita Mandal for being patient
with me.

Tim Rogers is a developer based in London, UK. Ever since he learned to work with
Twilio while building a cloud phone support system for his employer, GoCardless (an online
payments start-up) he has done freelance work on the platform for a number of SMEs and
has spoken about his experiences at Twilio's TwilioCon Europe conference.

Prateek Sachdev grew up in Bhopal, Madhya Pradesh. He is a prefinal year student
of International Institute of Information Technology, Hyderabad, India. He is pursuing his
B.Tech. in Computer Science. His interests lie in Artificial Intelligence, computer networking,
concurrency and parallelism, and operating systems. He is currently working on projects on
Distributed Systems. He would like to work on books on Python and Algorithms.

When he isn't glued to a computer screen, he spends time playing the guitar and listening
to music.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: Into the Frying Pan 5

Introduction 5
Adding two-factor voice authentication to verify users 6
Using Twilio SMS to set up two-factor authentication for secure websites 10
Adding order verification 13
Adding the Click-to-Call functionality to your website 15
Recording a phone call 17
Setting up a company directory 21
Setting up Text-to-Speech 26

Chapter 2: Now We're Cooking 31
Introduction 31
Tracking account usage 32
Screening calls 36
Buying a phone number 39
Setting up a voicemail system 42
Building an emergency calling system 45

Chapter 3: Conducting Surveys via SMS 49
Introduction 49
Why use PDO instead of the standard MySQL functions? 50
Letting users subscribe to receive surveys 52
Building a survey tree 54
Sending a survey to your users 58
Adding tracking for each user 60
Listening to user responses and commands 62
Building a chart of responses 64

ii

Table of Contents

Chapter 4: Building a Conference Calling System 69
Introduction 69
Scheduling a conference call 70
Sending an SMS to all participants at the time of the call 74
Starting and recording a conference 76
Joining a conference call from the web browser 80
Monitoring the conference call 84
Muting a participant 88

Chapter 5: Combining Twilio with Other APIs 91
Introduction 91
Searching for local businesses via text 93
Getting the local weather forecast 98
Searching for local movie listings 100
Searching for classifieds 101
Getting local TV listings 102
Searching Google using SMS 104
Searching the stock market 106
Getting the latest headlines 107

Chapter 6: Sending and Receiving SMS Messages 109
Introduction 109
Sending a message from a website 110
Replying to a message from the phone 111
Forwarding SMS messages to another phone number 114
Sending bulk SMS to a list of contacts 117
Tracking orders with SMS 118
Sending and receiving group chats 125
Sending SMS messages in a phone call 129
Monitoring a website 130

Chapter 7: Building a Reminder System 135
Introduction 135
Scheduling reminders via text 136
Getting notified when the time comes 139
Retrieving a list of upcoming reminders 141
Canceling an upcoming reminder 144
Adding another person to a reminder 148

Chapter 8: Building an IVR System 153
Introduction 153
Setting up IVRs 154
Screening and recording calls 158

iii

Table of Contents

Logging and reporting calls 160
Looking up HighriseHQ contacts on incoming calls 163
Getting directions 167
Leaving a message 170
Sending an SMS to your Salesforce.com contacts 176

Chapter 9: Building Your Own PBX 179
Introduction 179
Getting started with PBX 180
Setting up a subaccount for each user 184
Letting a user purchase a custom phone number 187
Allowing users to make calls from their call logs 192
Allowing incoming phone calls 197
Allowing outgoing phone calls 202
Deleting a subaccount 208

Chapter 10: Digging into OpenVBX 215
Introduction 215
Building a call log plugin 216
Building a searchable company directory 218
Collecting Stripe payments 224
Tracking orders 231
Building a caller ID routing plugin 238
Testing call flows 243

Chapter 11: Sending and Receiving Picture Messages 249
Introduction 249
Receiving MMS messages 250
Sending picture messages from a website 254
Making the picture message gallery 258
Filtering picture messages 269
Blacklisting and whitelisting the submissions 273

Chapter 12: Call Queuing 279
Introduction 279
Adding incoming callers to a call queue 280
Obtaining the average wait time for call queues 283
Setting a maximum queue size 284
Connecting the first caller in the queue 286

Chapter 13: Working with Twilio Client 291
Introduction 291
Setting up the client 291
Receiving incoming calls in the browser 295

iv

Table of Contents

Making outgoing calls from the browser 300
Making browser-to-browser calls 303
Displaying availability 307

Index 313

Preface
Phones are everywhere! From calling to texting, you use phones for business and personal use.
Twilio provides an API that lets you combine phone calls and SMS messages with your websites.

Twilio Cookbook Second Edition will get you on the fast track to learn how to use Twilio with
PHP and MySQL to add phone services and SMS to your websites. You'll also quickly learn how
to set up systems such as a company directory, PBX, voicemail system, and order-tracking
system and how to set up two-factor authentication.

What this book covers
Chapter 1, Into the Frying Pan, covers what you need to know about adding two-factor
authentication to a website to verify users, sets up a basic order-verification system, adds the
Click-to-Call functionality to a website, records phone calls, sets up a company directory, and
explains how to use Twilio Client for Text-to-Speech.

Chapter 2, Now We're Cooking, begins by covering how to create usage records, screen calls
to be actually answered by a person, buying a phone number, setting up a voicemail system,
and building an emergency calling system.

Chapter 3, Conducting Surveys via SMS, builds a system that lets you add subscribers, build a
survey, send surveys to subscribers, and view responses that come back.

Chapter 4, Building a Conference Calling System, shows you how to build a handy conference
calling system that includes scheduling, notifying attendees, recording the conference call,
joining the call from a browser or a phone, monitoring the conference, and muting attendees.

Chapter 5, Combining Twilio with Other APIs, shows you how to use Twilio with other APIs to
add features, such as a local business search via text messages, a movie listings search, a
weather lookup, and how to search using Google.

Preface

2

Chapter 6, Sending and Receiving SMS Messages, digs into the many SMS messaging
features that Twilio provides, beginning with sending messages from a website, replying to
messages from a phone, sending bulk SMS messages to a list of people, SMS order tracking
to check on orders, serving a group chat platform, and sending SMS messages from a phone
call.

Chapter 7, Building a Reminder System, uses Twilio's SMS services to let you schedule
reminders, get notified of reminders, retrieve a list of reminders, cancel a reminder, and add
another person to a reminder.

Chapter 8, Building an IVR System, shows you how to set up an Interactive Voice Response
system, beginning with a basic phone tree, screening and recording calls, logging and
reporting calls, looking up contacts on incoming calls using the HighRiseHQ API, and sending
SMS messages to salesforce.com contacts.

Chapter 9, Building Your Own PBX, shows you how to set up subaccounts for each of your
users, let the users buy their own phone numbers, accept incoming phone calls, make
outgoing calls, and delete their accounts.

Chapter 10, Digging into OpenVBX, takes you into the world of building plugins for the
OpenVBX system, starting with a call log plugin, going into a searchable company directory,
collecting payments over the phone using Stripe, tracking orders, setting up a caller ID
system, and testing call flows.

Chapter 11, Sending and Receiving Picture Messages, shows you how to use Twilio's Picture
Messaging protocol to send and receive MMS messages, including sending messages from a
phone to a website, building a photo gallery and sending pictures from a website to a phone.

Chapter 12, Call Queuing, introduces you to queuing calls for agents to answer and process.
This is handy for call centers.

Chapter 13, Working with Twilio Client, shows you how to build a web-based softphone to
handle incoming and outgoing calls without needing to use a phone.

What you need for this book
All you need to get started is a Twilio account; a web host; and a simple text editor, such as
Notepad++, Emacs, or Vim; and an Internet connection.

Who this book is for
This book is for programmers who have already used PHP and MySQL in one way or another.
It's for people who work with a lot of backend code and want to get up to speed with the world
of Twilio. It's for people who want to use the capabilities of Twilio to let their websites handle
phone calls and SMS messages.

Preface

3

The book is for both beginners and seasoned developers, assuming that you have some
experience in PHP and MySQL already, but an in-depth knowledge is not necessary.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Let's set up our listener.php file to store all
incoming messages and messages.php to view messages we've received."

A block of code is set as follows:

 <?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
 $myUrl = ''; // THE URL TO YOUR SCRIPT

 $dbhost = ''; // YOUR DATABASE HOST
 $dbname = ''; // YOUR DATABASE NAME
 $dbuser = ''; // YOUR DATABASE USER
 $dbpass = ''; // YOUR DATABASE PASS
 ?>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "We now have a menu option
under the Admin menu called Test Call Flow."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

Preface

4

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message. If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, see our author
guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Into the Frying Pan

In this chapter we will cover:

 f Adding two-factor voice authentication to verify users

 f Using Twilio SMS to set up two-factor authentication for secure websites

 f Adding order verification

 f Adding Click-to-Call functionality to your website

 f Recording a phone call

 f Setting up a company directory

 f Setting up Text-to-Speech

Introduction
Twilio's API allows you to do some incredible things. Combine it with PHP and you have
a powerful tool that you can use to enhance your business or even build entirely new
businesses around it.

I've worked with Twilio on dozens of projects over the past three and a half years and have
built entire startups around it such as TheInterviewr.com.

This chapter will get you started on using Twilio for two-factor authentication functionality,
order verification, adding Click-to-Call to your website, recording phone calls, setting up a
company directory, and using Twilio Client to add Text-to-Speech capabilities to your website.

Before we begin, you'll need a twilio.com account, so go to http://twilio.com
and sign up.

To get started, you will want to have Twilio's helper library at http://www.twilio.com/
docs/libraries.

Into the Frying Pan

6

You can get your Twilio ACCOUNT SID and AUTH TOKEN from your account page here:

You can also click on NUMBERS to manage your list:

Now, let's get started with some code...

Adding two-factor voice authentication to
verify users

Being able to verify that the users are actual users, and being able to help them have better
security, is an important factor for everyone, and that's where two-factor authentication comes
in handy.

Two-factor authentication is a more secure way of logging in to a website. In addition to
entering a password online, a user has to enter a random verification code generated
at login time. This combination of passwords makes it easier to safeguard your applications.

Two-factor authentication is used in:

 f E-commerce sites

 f Sites that allow users to sign up

 f Recovering lost passwords (by sending the new code to a phone number
already saved)

More and more big web services are starting to activate two-factor authentication as they
realize how important it can be. Amazon, Google, and Apple are just some of the companies
that have begun utilizing two-factor authentication for user protection.

Chapter 1

7

Getting ready
The complete source code for this recipe can be found in at Chapter1/Recipe1.

How to do it...
We're going to build our first Twilio app, a two-factor voice authentication system. This can be
plugged into websites to allow users to get called on a phone and verify whether they are who
they say they are. Perform the following steps:

1. Download the Twilio Helper Library (from https://github.com/twilio/
twilio-php/zipball/master) and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
?>

This file will let you configure your web app with your Twilio account information.

4. We'll set up a file called two-factor-voice.php, which will sit on your web server.
This file handles the two-factor authentication:
<?php
 session_start();
 include 'Services/Twilio.php';
 include 'config.php';
 include 'functions.php';
 $username = cleanVar('username');
 $password = cleanVar('password');
 $phoneNum = cleanVar('phone_number');
 if(isset($_POST['action'])){
 if(isset($_POST['username']) &&
 isset($_POST['phone_number'])
){
 $message = user_generate_token($username,
 $phoneNum,'calls');
 }else if(isset($_POST['username']) &&
 isset($_POST['password'])){
 $message = user_login($username, $password);
 }
 header("Location: two-factor-voice.php?message=" .
 urlencode($message));

Into the Frying Pan

8

 exit;
 }
?>
<html>
<body>
 <p>Please enter a username, and a phone number you can be
 reached at, we will then call you with your one-time
 password</p>

 <?php
 echo cleanVar('message');
 $action = (isset($_SESSION['password'])) ? 'login' :
 'token';
 ?>

 <form id="reset-form" method="POST" class="center">
 <input type="hidden" name="action" value="<?php echo
 $action;
 ?>" />
 <p>Username: <input type="text" name="username"
 id="username"
 value="<?php echo $_SESSION['username']; ?>" /></p>
 <?php if (isset($_SESSION['password'])) { ?>
 <p>Password: <input type="password" name="password"
 id="password" /></p>
 <?php } else { ?>
 <p>Phone Number: <input type="text" name="phone_number"
 id="phone_number" /></p>
 <input type="hidden" name="method" value="voice" />
 <?php } ?>
 <p><input type="submit" name="submit" id="submit"
 value="login!"/></p>
 <p> </p>
 </form>
</body>
</html>

You may notice one of the functions we called is cleanVar(); this is a little function
I like to use to make sure certain variables, specifically usernames, passwords, and
phone numbers, follow a set rule.

Chapter 1

9

5. Finally, create a file called functions.php on your web server:
<?php
 function cleanVar($key){
 $retVal = '';
 $retVal = isset($_REQUEST[$key]) ?
 $_REQUEST[$key] : '';
 switch($key){
 case 'username':
 case 'password':
 $retVal = preg_replace("/[^A-Za-z0-9]/",
 "", $retVal);
 break;
 case 'phone_number':
 $retVal = preg_replace("/[^0-9]/", "", $retVal);
 break;
 case 'message':
 $retVal = urldecode($retVal);
 $retVal = preg_replace("/[^A-Za-z0-9 ,']/",
 "", $retVal);

 }
 return $retVal;
 }

 function user_generate_token($username, $phoneNum,
 $method='calls'){
 global $accountsid, $authtoken, $fromNumber;
 $password = substr(md5(time().rand(0, 10^10)), 0, 10);
 $_SESSION['username'] = $username;
 $_SESSION['password'] = $password;
 $client = new Services_Twilio($accountsid, $authtoken);
 $content = "Your newly generated password
 is ".$password."To repeat that, your password
 is ".$password;
 $item = $client->account->$method->create(
 $fromNumber,
 $phoneNum,
 $content
);
 $message = "A new password has been generated and sent
 to your phone number.";
 return $message;
 }

Into the Frying Pan

10

 function user_login($username, $submitted) {
 // Retrieve the stored password
 $stored = $_SESSION['password'];
 // Compare the retrieved vs the stored password
 if ($stored == $submitted) {
 $message = "Hello and welcome back $username";
 }else {
 $message = "Sorry, that's an invalid username and
 password combination.";
 }
 // Clean up after ourselves
 unset($_SESSION['username']);
 unset($_SESSION['password']);
 return $message;
 }
?>

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP; this library is
the heart of your Twilio-powered apps.

In step 3, we uploaded config.php that contains our authentication information to talk to
Twilio's API.

When your users go to two-factor-voice.php, they are presented with a form where they
enter a username and their phone number. Once they submit the form, it generates a one-time
usage password and sends it as a text message to the phone number they entered. They then
enter this password in the form on the site to verify that they are who they say they are.

I've used this on several different types of websites; it's a feature that people always want in
some way to help verify that your users are who they say they are.

Using Twilio SMS to set up two-factor
authentication for secure websites

This recipe is similar to the two-factor voice authentication recipe but uses SMS instead and
texts the user their one-time password.

Again, two-factor authentication is an important tool to verify your users for various purposes
and should be used on sites if you care at all about user security.

Forcing a user to verify their identity using two-factor authentication, in order to do something as
simple as changing their password, can help promote trust between both you and your users.

Chapter 1

11

Getting ready
The complete source code for this recipe can be found at Chapter1/Recipe2.

How to do it...
We're going to build our first Twilio app, a two-factor SMS authentication system. This can be
plugged into websites to allow users to get called on a phone and verify that they are who they
say they are.

1. Download the Twilio Helper Library (from https://github.com/twilio/
twilio-php/zipball/master) and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
?>

4. We'll set up a file called two-factor-sms.php, which will sit on your web server;
this file handles the two-factor authentication.
<?php
 session_start();
 include 'Services/Twilio.php';
 include 'config.php';
 include 'functions.php';
 $username = cleanVar('username');
 $password = cleanVar('password');
 $phoneNum = cleanVar('phone_number');
 if(isset($_POST['action'])){
 if(isset($_POST['username']) &&
 isset($_POST['phone_number'])){
 $message = user_generate_token($username, $phoneNum,
 'sms');
 }else if(isset($_POST['username']) &&
 isset($_POST['password'])
){
 $message = user_login($username, $password);
 }
 header("Location: two-factor-sms.php?message=" .
 urlencode($message));

Into the Frying Pan

12

 exit;
}
?>
<html>
<body>
<p>Please enter a username, and a phone number you can be reached
at, we will then send you your one-time password via SMS.</p>

<?php
 echo cleanVar('message');
 $action = (isset($_SESSION['password'])) ? 'login' : 'token';
?>

<form id="reset-form" method="POST" class="center">
<input type="hidden" name="action" value="<?php echo
 $action; ?>"/>
<p>Username: <input type="text" name="username"
 id="username" value="<?php echo $_SESSION['username'];
 ?>" /></p>
<?php if (isset($_SESSION['password'])) { ?>
 <p>Password: <input type="password" name="password"
 id="password" /></p>
<?php } else { ?>
 <p>Phone Number: <input type="text" name="phone_number"
 id="phone_number" /></p>
 <input type="hidden" name="method" value="sms" checked="checked"
 />
<?php } ?>
<p><input type="submit" name="submit" id="submit"
 value="login!"/></p>
<p> </p>
</form>
</body>
</html>

5. Finally, we're going to include the same functions.php file we used in the Adding
two-factor voice authentication to verify users recipe.

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP; this library is
the heart of your Twilio-powered apps.

In step 3, we uploaded config.php that contains our authentication information to talk to
Twilio's API.

Chapter 1

13

Your user is presented with a form where they enter a username and their phone number.
Once they submit the form, it generates a one-time usage password and sends it as a text
message to the phone number they entered. They then enter this password in the form on
the site to verify that they are who they say they are.

What's the big difference between recipes 1 and 2? Really, it's that one does voice and one does
SMS. You could combine these as options if you wanted to so that people can choose between
voice or SMS. The biggest key is when you call the function user_generate_token; you
specify the method as either calls or sms.

Adding order verification
If you handle any type of commerce, such as e-commerce and callin orders, you know that
giving your customers a way to quickly check their orders is handy for selling anything.

Making things easy for customers keeps them coming back again; having a way for your
customers to just text you an order ID and tracking their purchase at any time is really handy.

In this example, a user will text an order ID and we will return a result based on an array.

The array will be formatted by order ID and status as follows:

$orders = array(
 'order id'=>'status'
);

Getting ready
The complete source code for this recipe can be found at Chapter1/Recipe3.

How to do it...
We're going to set up a simple order verification system. A user will text us an order number
and we will reply back with the status of that order.

1. Upload a file called order_verification.php to your server:
 <?php
 $orders = array(
 '111'=>'shipped',
 '222'=>'processing',
 '333'=>'awaiting fullfillment'
);
 if(isset($_POST['Body'])){
 $phone = $_POST['From'];
 $order_id = strtolower($_POST['Body']);

Into the Frying Pan

14

 $status = order_lookup($order_id);
 print_sms_reply("Your order is currently set at
 status'".$status."'");
 }else{
 print_sms_reply("Please send us your order id and we
 will look it up ASAP");
 }
 function print_sms_reply ($sms_reply){
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
 echo "<Response>\n<Sms>\n";
 echo $sms_reply;
 echo "</Sms></Response>\n";
 }
 function order_lookup($order_id){
 global $orders;
 if(isset($orders[$order_id])){
 return $orders[$order_id];
 }
 return 'No Order Matching that ID was found';
 }
 ?>

2. To have a number point to this script, log in to your Twilio account and point your
Twilio phone number to it:

Chapter 1

15

Insert the URL in the SMS Request URL field on this page. Then, any text messages that you
receive on this number will be processed via order_verification.php.

How it works...
In step 1, we created order_verification.php.

In step 2, we configured a number in our Twilio account to call order_verification.php.

This is a one-step recipe. A user sends you a text message containing their order ID; you then
perform a lookup and return the status.

If no order exists, it returns that the order wasn't found in the system.

Adding the Click-to-Call functionality to your
website

Click-to-Call is a handy functionality where you can have your website visitors click a button to
start a call. This can be useful for handling support, sales calls, or just chatting with your users.

Getting ready
The complete source code for this recipe can be found at Chapter1/Recipe4.

How to do it...
Ready? We're going to build a simple Click-to-Call system. With this, you can set up any
website to allow a visitor to type in a phone number and connect a call between you and them.

1. Download the Twilio Helper Library (from https://github.com/twilio/
twilio-php/zipball/master) and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
 $toNumber = ''; // YOUR PHONE NUMBER TO CONNECT TO
?>

Into the Frying Pan

16

4. Upload a file called click-to-call.php to your website:
<?php
session_start();
include 'Services/Twilio.php';
include("config.php");
if(isset($_GET['msg']))
 echo $msg;
?>
<h3>Please enter your phone number, and you will be
 connected to <?=$toNumber?></h3>
<form action="makecall.php" method="post">
Your Number: <input type="text" name="called"
 />
<input type="submit" value="Connect me!" />
</form>

This file displays a form that, when submitted, triggers the rest of the calling process.

5. Now, upload a file named makecall.php to your website:
<?php
session_start();
include 'Services/Twilio.php';
include("config.php");

$client = new Services_Twilio($accountsid, $authtoken);
if (!isset($_REQUEST['called'])) {
 $err = urlencode("Must specify your phone number");
 header("Location: click-to-call.php?msg=$err");
 die;
}
$call = $client->account->calls->create($fromNumber,
 $toNumber,
 'callback.php?number=' . $_REQUEST['called']);
$msg = urlencode("Connecting... ".$call->sid);
header("Location: click-to-call.php?msg=$msg");
?>

6. Finally, upload a file named callback.php to your website:
<?php
 header("content-type: text/xml");
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
?>
<Response>

Chapter 1

17

 <Say>A customer at the number <?php echo
 $_REQUEST['number']?>
 is calling</Say>
 <Dial><?php echo $_REQUEST['number']?></Dial>
</Response>

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP.

In step 3, we uploaded config.php containing our authentication information to talk to
Twilio's API.

In steps 4, 5, and 6, we created the backbone of our Click-to-Call system.

We display a form on your website, where a user enters his or her phone number and clicks
the Connect me! button. The system then calls your phone number; once you answer, it will
connect you to the user.

Recording a phone call
Recording a call is handy for conducting interviews. In this example, we're going to build on
the Click-to-Call recipe and add in the ability to record the call.

Getting ready
The complete source code for this recipe can be found at Chapter1/Recipe5.

How to do it...
This recipe will expand on our Click-to-Call system to include the ability to record the phone
call. We'll also set up a nice method to retrieve recordings.

1. Download the Twilio Helper Library (from https://github.com/twilio/
twilio-php/zipball/master) and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
 $toNumber = ''; // YOUR PHONE NUMBER TO CONNECT TO
 $toEmail = ''; // YOUR EMAIL ADDRESS TO SEND RECORDING TO
?>

Into the Frying Pan

18

4. Upload a file called record-call.php to your website:
<?php
session_start();
include 'Services/Twilio.php';
include("config.php");
if(isset($_GET['msg']))
 echo $msg;
?>
<h3>Please enter your phone number, and you will be
 connected to <?=$toNumber?></h3>
<form action="makecall.php" method="post">
Your Number: <input type="text"
 name="called" />
<input type="submit" value="Connect me!" />
</form>

This file displays a form that, when submitted, triggers the rest of the calling process.

5. Now, upload a file named makecall.php to your website:
<?php
session_start();
include 'Services/Twilio.php';
include("config.php");
$client = new Services_Twilio($accountsid, $authtoken);
if (!isset($_REQUEST['called'])) {
 $err = urlencode("Must specify your phone number");
 header("Location: record-call.php?msg=$err");
 die;
}

$url = (!empty($_SERVER['HTTPS'])) ?
"https://".$_SERVER['SERVER_NAME'].$_SERVER['REQUEST_URI']:
"http://".$_SERVER['SERVER_NAME'].$_SERVER['REQUEST_URI'];
$url = str_replace("makecall","recording",$url);

$call = $client->account->calls->create($fromNumber, $to,
 'callback.php?number=' .
 $_REQUEST['called'],array("record"=>true));

$msg = urlencode("Connecting... ".$call->sid);
$_SESSION['csid'] = $call->sid;
$RecordingUrl = $url."?csid=".$call->sid;
$subject = "New phone recording from
 {$_REQUEST['called']}";

Chapter 1

19

$body = "You have a new phone recording from
 {$_REQUEST['called']}:\n\n";

$body .= $RecordingUrl;

$headers = 'From: noreply@'.$_SERVER['SERVER_NAME']
 . "\r\n" .
 'Reply-To: noreply@'.$_SERVER['SERVER_NAME'] . "\r\n" .
 'X-Mailer: Twilio';
mail($toEmail, $subject, $body, $headers);
header("Location: record-call.php?msg=$msg");
?>

The makecall.php file handles the actual setting up of the call and also sends you
an e-mail that provides you with a link to view the recording.

6. Next, upload a file named callback.php to your website:
<?php
 header("content-type: text/xml");
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
?>
<Response>
 <Say>A customer at the number <?php echo
 $_REQUEST['number']?> is calling</Say>
 <Dial record=true><?php echo $_REQUEST['number']?></Dial>
</Response>

Did you catch what we did here? We told the Dial command to record the call. This
means anything that is spoken during this call is now recorded.

7. Finally, upload a file named recording.php to your website:
<?php
if(isset($_GET['csid'])){
 getRecording($_GET['csid']);
}else{
 die("Invalid recording!");
}
function getRecording($caSID){
 global $accountsid,$authtoken;
 $version = '2010-04-01';
 $url = "https://api.twilio.com/2010-04-
 01/Accounts/{$accountsid}/
 Calls/{$caSID}/Recordings.xml";
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL, $url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

Into the Frying Pan

20

 curl_setopt($ch, CURLOPT_USERPWD,
 "{$accountsid}:{$authtoken}");
 curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
 $output = curl_exec($ch);
 $info = curl_getinfo($ch);
 curl_close($ch);
 $output = simplexml_load_string($output);
 echo "<table>";
 foreach ($output->Recordings->Recording as $recording)
 {
 echo "<tr>";
 echo "<td>".$recording->Duration." seconds</td>";
 echo "<td>".$recording->DateCreated."</td>";
 echo '<td><audio src="https://api.twilio.com/
 2010-04-01/Accounts/'.$sid.'/Recordings/
 '.$recording->Sid.'.mp3" controls preload="auto"
 autobuffer></audio></td>';
 echo "</tr>";
 }
 echo "</table>";
}

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP.

In step 3, we uploaded config.php that contains our authentication information to talk to
Twilio's API.

In steps 4, 5, and 6, we re-created the Click-to-Call functionality from the previous recipe but
with one difference: we also set makecall.php to e-mail us a link to do the recording, as well
as setting callback.php to actually do the recording.

As with the preceding Adding Click-to-Call functionality to your website recipe, a user is
presented with a form on the website where they enter their information and click to begin
a call. The difference here is that the call is actually recorded; once it's finished, the system
e-mails you a link to listen to your recording.

One thing to remember with recordings is that it could take a few minutes after the call for the
recording to be available. Hence, the script e-mails you a link to view the recording instead of
the recording itself.

Chapter 1

21

Setting up a company directory
A company directory is a very handy thing to have when you want a company phone number to
be published and then have it contact other people in your company. It's also nice to make it
searchable and that is what we are doing today.

This particular company directory has served me well at several companies I've worked with
over the years and I'm especially pleased with its ability to convert names into their matching
digits on a phone pad using this function:

 function stringToDigits($str) {
 $str = strtolower($str);
 $from = 'abcdefghijklmnopqrstuvwxyz';
 $to = '22233344455566677778889999';
 return preg_replace('/[^0-9]/', '', strtr($str, $from, $to));
 }

This function works such that a name such as Stringer (my last name), gets converted into
78746437. Then, as the caller does a search, it will return an employee whose name matches
the digits entered and will then connect the call.

Getting ready
The complete source code for this recipe can be found at Chapter1/Recipe6.

How to do it...
We're going to build a basic, searchable company directory that will let callers either enter an
extension or search by their last name.

1. Download the Twilio Helper Library (from https://github.com/twilio/
twilio-php/zipball/master) and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
?>

Into the Frying Pan

22

4. Let's create the file called company-directory-map.php, which sets up the map
for the company directory:
<?php
 $directory = array(
 '0'=> array(
 'phone'=>'415-555-1111',
 'firstname' => 'John',
 'lastname' => 'Smith'
),
 '1234'=> array(
 'phone'=>'415-555-2222',
 'firstname' => 'Joe',
 'lastname' => 'Doe'
),
 '4321'=> array(
 'phone'=>'415-555-3333',
 'firstname' => 'Eric',
 'lastname' => 'Anderson'
),
);
 $indexes = array();
 foreach($directory as $k=>$row){
 $digits = stringToDigits($row['lastname']);
 $indexes[$digits] = $k;
 }
 function stringToDigits($str) {
 $str = strtolower($str);
 $from = 'abcdefghijklmnopqrstuvwxyz';
 $to = '22233344455566677778889999';
 return preg_replace('/[^0-9]/', '', strtr($str, $from,
 $to));
 }
 function getPhoneNumberByExtension($ext){
 global $directory;
 if(isset($directory[$ext])){
 return $directory[$ext];
 }
 return false;
 }
 function getPhoneNumberByDigits($digits){
 global $directory,$indexes;
 $search = false;
 foreach($indexes as $i=>$ext){
 if(stristr($i,$digits)){
 $line = $directory[$ext];
 $search = array();

Chapter 1

23

 $search['name']= $line['firstname']."
 ".$line['lastname'];
 $search['extension']=$ext;
 }
 }
 return $search;
 }
?>

This file handles the list of extensions, and also takes care of the functions
that handle the searching. One of the steps it performs is to loop through each
extension and convert the last name into digits corresponding with a phone pad.

5. Now, we'll create company-directory.php to handle the logic for incoming calls:
<?php
 session_start();
 include 'Services/Twilio.php';
 include 'config.php';
 include('company-directory-map.php');
 $first = true;
 if (isset($_REQUEST['Digits'])) {
 $digits = $_REQUEST['Digits'];
 if($digits == "*"){
 header("Location: company-directory-lookup?
 Digits=".$digits);
 exit();
 }
 } else {
 $digits='';
 }
 if(strlen($digits)){
 $first = false;
 $phone_number = getPhoneNumberByExtension($digits);
 if($phone_number!=null){
 $r = new Services_Twilio_Twiml();
 $r->say("Thank you, dialing now");
 $r->dial($phone_number);
 header ("Content-Type:text/xml");
 print $r;
 exit();
 }
 }
 $r = new Services_Twilio_Twiml();
 $g = $r->gather();
 if($first){
 $g->say("Thank you for calling our company.");
 }else{

Into the Frying Pan

24

 $g->say('I\'m sorry, we could not find the extension '
 . $_REQUEST['Digits']);
 }
 $g->say(" If you know your party's extension, please
 enter the extension now, followed by the pound sign.
 To search the directory, press star. Otherwise, stay on
 the line for the receptionist.");
 $r->say("Connecting you to the operator, please stay on
 the line.");
 $r->dial($receptionist_phone_number);
 header ("Content-Type:text/xml");
 print $r;
 exit;
?>

All incoming calls will first come into this file and, from there, will either be redirected
straight to an extension or start the lookup process based on the last name.

6. And finally, we create company-directory-lookup.php that adds the ability to
perform search operations:
<?php
 session_start();
 include 'Services/Twilio.php';
 include 'config.php';
 include('company-directory-map.php');
 $error = false;
 if (isset($_REQUEST['Digits'])){
 $digits = $_REQUEST['Digits'];
 }else{
 $digits='';
 }
 if(strlen($digits)){
 $result = getPhoneNumberByDigits($digits);
 if($result != false){
 $number = getPhoneNumberByExtension
 ($result['extension']);
 $r = new Services_Twilio_Twiml();
 $r->say($result['name']."'s extension is
 ".$result['extension']." Connecting you now");
 $r->dial($number);
 header ("Content-Type:text/xml");
 print $r;
 exit();
 } else {
 $error=true;
 }
 }

Chapter 1

25

 $r = new Services_Twilio_Twiml();
 if($error) $r->say("No match found for $digits");
 $g = $r->gather();
 $g->say("Enter the first four digits of the last name of
 the party you wish to reach, followed by the pound
 sign");
 $r->say("I did not receive a response from you");
 $r->redirect("company-directory.php");
 header ("Content-Type:text/xml");
 print $r;
?>

This file handles our lookups; as a caller types digits into a phone dial pad, this script
will loop through the extensions to find a name that matches the digits entered.

7. Finally, we need to have a number point to this script. Upload company-directory.
php somewhere and then point your Twilio phone number to it:

Insert the URL in the Voice Request URL field on this page. Then, any calls that you
receive at this number will be processed via company-directory.php.

Into the Frying Pan

26

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP.

In step 3, we uploaded config.php that contains our authentication information to talk to
Twilio's API.

In step 4, we set up the $directory array in company-directory-map.php, which is the
core of this system; it handles the extension number for each employee as well as containing
his/her phone number, first name, and last name.

When a caller chooses to search for an employee, the last name is converted into
corresponding digits similar to what you see on a phone.

So for example, Stringer becomes 78746437; as the caller does a search, it will return an
employee whose name matches and will then connect the call.

Finally, in step 7, we set up our phone number in Twilio to point to the location where
company-directory.php has been uploaded so that all calls to that phone number
go straight to company-directory.php.

You now have a nice, searchable company directory. I've been using this directory myself for
the last two years at various companies and it works nicely.

Setting up Text-to-Speech
The final recipe of this chapter is going to use the Twilio Client to add handy functionality on
your site.

Text-to-Speech is useful for having a voice read back text on a web page. You could do this by
having a textbox of text that gets read back; or maybe you want to select text on a web page to
be read back to a visitor.

Twilio Client is also handy for doing phone work straight from your browser.

Getting ready
The complete source code for this recipe can be found at Chapter1/Recipe7.

Chapter 1

27

How to do it...
We're going to use the Twilio Client to set up a form where people can type in a message and
have it spoken back to them either by a male or female voice.

1. First, since this is using the Twilio Client, you need to set up a Twiml app under
your account.

Click on the Create TwiML App button and enter a name for your app. Also, you'll
need to enter a URL for the Voice. In this case, set it to the URL where you have
uploaded incoming_call.php, that is, http://MYWEBSITE.COM/incoming_
call.php.

Into the Frying Pan

28

Now, go back to the application list and you will see your new app. Look at the line
directly beneath the name of your app; this is your app SID. Copy that as you will
need it for this recipe.

2. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

3. Upload the Services/ folder to your website.

4. Upload config.php to your website and make sure the following variables are set:
<?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
?>

5. Let's create a file on your website called text-to-speech.php:
<?php
 require_once('Services/Twilio/Capability.php');
 include("config.php");
 $APP_SID = 'YOUR APP SID';
 $token = new Services_Twilio_Capability($accountsid,
 $authtoken);
 $token->allowClientOutgoing($APP_SID);
?>
<html>
<head>
 <title>Text-To-Speech</title>
 <script type="text/javascript" src=
 "https://ajax.googleapis.com/ajax/libs/jquery/
 1.6.2/jquery.min.js"></script>
 <script type="text/javascript"
 src="//static.twilio.com/libs/twiliojs/1.1/
 twilio.min.js"></script>
 <script type="text/javascript">

Chapter 1

29

 Twilio.Device.setup("<?php echo $token-
 >generateToken();?>",{"debug":true});
 $(document).ready(function() {
 $("#submit").click(function() {
 speak();
 });
 });
 function speak() {
 var dialogue = $("#dialogue").val();
 var voice =
 $('input:radio[name=voice]:checked').val();
 $('#submit').attr('disabled', 'disabled');
 Twilio.Device.connect({ 'dialogue' :
 dialogue, 'voice' : voice });
 }
 Twilio.Device.disconnect(function (conn) {
 $('#submit').removeAttr('disabled');
 });
 </script>
</head>
<body>
<p>
 <label for="dialogue">Text to be spoken</label>
 <input type="text" id="dialogue" name="dialogue"
 size="50">
</p>
<p>
 <label for="voice-male">Male Voice</label>
 <input type="radio" id="voice-male" name="voice"
 value="1" checked="checked">
 <label for="voice-female">Female Voice</label>
 <input type="radio" id="voice-female" name="voice"
 value="2">
</p>
<p>
 <input type="button" id="submit" name="submit"
 value="Speak to me">
</p>
</body>
</html>

Into the Frying Pan

30

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

6. Now, let's create another file on your website called incoming_call.php, which is
the file Twilio Client will call. This will then read back the text you entered using either
a male or female voice:
<?php
 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8" ?>';
 $dialogue = trim($_REQUEST['dialogue']);
 $voice = (int) $_REQUEST['voice'];
 if (strlen($dialogue) == 0){
 $dialogue = 'Please enter some text to be spoken.';
 }
if ($voice == 1){
 $gender = 'man';
}else {
 $gender = 'woman';
}
?>
<Response>
 <Say voice="<?php echo $gender; ?>"><?php echo
 htmlspecialchars($dialogue); ?></Say>
</Response>

How it works...
In step 1, we set up our Twiml app in our Twilio account.

In steps 2 and 3, we downloaded and installed the Twilio Helper Library for PHP.

In step 4, we uploaded config.php that contains our authentication information to talk to
Twilio's API.

Using Twilio Client, this recipe will read the content of a text box and play it back to you in
either a male or female voice.

Twilio Client is a nice addition to the Twilio API that lets you do phone work straight from the
browser. This way, you can add functionality directly to your web apps.

2
Now We're Cooking

In this chapter we will cover the following:

 f Tracking account usage

 f Screening calls

 f Buying a phone number

 f Setting up a voicemail system

 f Building an emergency calling system

Introduction
In Chapter 1, Into the Frying Pan, we brought to you some handy recipes for Twilio; we're going
to continue that in this chapter.

First, we'll show you how to generate usage records that come in handy for tracking usage
across your Twilio account, especially when you have a web app that has customers using
it daily.

Call screening lets you check calls that are actually answered by a person; if a machine
answers, we move on to the next phone number.

Buying a phone number is also handy when you have multiple users and want to let them
purchase a phone number to use for their own account.

A voicemail system lets you give callers a voice mailbox to store messages in and then sends
you an e-mail with the transcribed message.

Finally, the emergency calling system will try a list of phone numbers when you find yourself in
an emergency situation, to find someone who answers.

Now We're Cooking

32

Tracking account usage
Tracking your call usage is important if you handle a lot of calls or if you have a site that has
multiple users.

My website, theinterviewr.com, looks through hundreds of calls being made each week;
this call usage tracking helps me know which users are making which calls so that I can see
who's heavily using the network and who is not.

This also helps me analyze things and make sure I'm actually charging users reasonably
per call.

Getting ready
The complete source code for this recipe can be found in the Chapter2/Recipe1 folder in
the code bundle available at www.packtpub.com/support.

How to do it...
We're going to build a usage tracking system now to let us look at how our Twilio account is
being used. Perform the following steps to do so:

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
?>

4. Create a file called functions.php with the following content:
<?php
function get_usage($action){
 global $accountsid;
 $results = array();
 $fields = array();
 $url = "https://api.twilio.com/2010-04-01/Accounts/
{$accountsid}/Usage/Records";
 switch($action){
 case 'lm': // last month
 $url = $url."/LastMonth.json";

Chapter 2

33

 break;
 case 'custom':
 $startd = $_GET['startd'];
 $endd = $_GET['endd'];
 $startd = date('Y-m-d',strtotime($startd));
 $endd = date('Y-m-d',strtotime($endd));
 $url = $url."/Daily.json";
 $fields = array(
 "Category"=>'calls-inbound',
 "StartDate"=>$startd,
 "EndDate"=>$endd
);
 break;
 case 'all':
 $url = $url.".json";
 break;
 case 'today':
 default:
 $url = $url."/Today.json";
 break;
 }
 if (isset($url)){
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL, $url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch, CURLOPT_USERPWD,
"{$accountsid}:{$authtoken}");
 curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
 if(count($fields) > 0){
 foreach($fields as $key=>$value) { $fields_string .=
$key.'='.$value.'&'; }
 rtrim($fields_string,'&');
 curl_setopt($ch,CURLOPT_POST,count($fields));
 curl_setopt($ch,CURLOPT_POSTFIELDS,$fields_string);
 }
 $results = curl_exec($ch);
 $info = curl_getinfo($ch);
 curl_close($ch);
 return json_decode($results);
 }
 return array();
}

Now We're Cooking

34

functions.php is the file that actually handles communicating
with Twilio and returning the usage information.

5. Create a file on your website called call-usage.php, with the following code:
<?php
 session_start();
 include 'Services/Twilio.php';
 include("config.php");
 include("functions.php");

 $client = new Services_Twilio($accountsid, $authtoken);

 $action = isset($_GET['action']) ? $_GET['action'] : 'today';
?>
 <nav>
 Today
 Last Month
 All Calls
 Custom Report:
 <form action="" method="GET">
 <input type="hidden" name="action" value="custom" />
 <input type="date" name="startd" placeholder="Start Date" />
 <input type="date" name="endd" placeholder="End Date" />
 <button type="submit">Generate</button>
 </form>
 </nav>
 <hr />
<?php
 $results = get_usage($action){

 if(count($results > 0)){
echo '<pre>'.print_r($results,true).'</pre>';
?>
 <table width=100%>
 <thead>
 <tr>
 <th>Category</th>
 <th>Description</th>
 <th>SID</th>
 <th>Start Date</th>
 <th>End Date</th>
 <th>Usage</th>
 <th>Usage Unit</th>

Chapter 2

35

 <th>Price</th>
 <th>Price Unit</th>
 </tr>
 </thead>
 <tbody>
<?php foreach($results->usage_records as $row){ ?>
 <tr>
 <td><?= $row->category?></td>
 <td><?= $row->description?></td>
 <th><?= $row->account_sid?></th>
 <td><?= $row->start_date?></td>
 <td><?= $row->end_date?></td>
 <td><?= $row->usage?></td>
 <td><?= $row->usage_unit?></td>
 <td><?= $row->price?></td>
 <td><?= $row->price_unit?></td>
 </tr>
<?php } ?>
 </tbody>
 </table>
<?php
 }
?>

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP. This library is
at the heart of your Twilio-powered apps.

In step 3, we uploaded config.php, which contains our authentication information to
communicate with Twilio's API.

In step 4, we uploaded functions.php, which includes the function get_usage.php
file; this function takes your account ID, as well as the criteria you chose to search by, and
returns a JSON-encoded document from Twilio.

We then display the usage logs on the site to view. This usage tracker displays the account that
performed the call, the number of minutes, and the cost for the call. If you use subaccounts, it is
handy for knowing what to bill your users each month.

This recipe also displays reports as per the present day, past week, past month, and also
custom dates. This works well for getting an idea of how much usage you actually have.

Now We're Cooking

36

Screening calls
Call screening is a useful ability to have on your calling systems. For example, let's say
you have three people on call in your support department and you want to call the first
available agent.

This recipe will try and connect to each phone number available in a given array and check to
see if a person answers or not; if a person does, it connects the call.

Getting ready
The complete source code for this recipe can be found in the Chapter2/Recipe2 folder.

How to do it...
We're going to build a call-handling system that will forward calls to our list of agents; the first
agent who accepts the call by pushing a button will get the call.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
?>

4. The call-screening feature we are building will consist of three files. The first file is
called call-screening.php and contains the following code:
<?php
$numbers = array("1234567890", "1234567891", "1234567892");
$number_index = isset($_REQUEST['number_index']) ? $_
REQUEST['number_index'] : "0";
$DialCallStatus = isset($_REQUEST['DialCallStatus']) ? $_
REQUEST['DialCallStatus'] : "";
header("content-type: text/xml");

Chapter 2

37

if($DialCallStatus!="completed" && $number_index<count($numbers)){
?>
 <Response>
 <Dial action="call-screening.php?number_index=<?php echo
$number_index+1 ?>">
 <Number url="areyouhuman.xml">
 <?php echo $numbers[$number_index] ?>
 </Number>
 </Dial>
 </Response>
<?php
} else {
?>
 <Response>
 <Hangup/>
 </Response>
<?php
}
?>

5. When the phone is answered, we trigger a call to areyouhuman.xml that prompts
the person answering the phone to press any key. Pressing any key will notify the
system that it is indeed a person.
<?xml version="1.0" encoding="UTF-8"?>
<Response>
 <Gather action="iamhuman.xml">
 <Say>Press any key to accept this call</Say>
 </Gather>
 <Hangup/>
</Response>

6. Since the person who was called did press a key, we assume he or she is a real
person, and not a machine, and connect the call.
 <?xml version="1.0" encoding="UTF-8"?>
 <Response>
 <Say>Connecting</Say>
 </Response>

Now We're Cooking

38

7. Finally, you have to point your Twilio phone number to it.

Insert the URL to this page in the Voice Request URL box. Then, any calls that you
receive at this number will be processed via call-screening.php.

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP. This library is
at the heart of your Twilio-powered apps.

In step 3, we uploaded config.php that contains our authentication information to talk to
Twilio's API.

In step 4, we uploaded call-screening.php; in steps 5 and 6, we created areyouhuman.
xml and iamhuman.xml.

Finally, in step 7, we configured a phone number to direct all calls to call-screening.php.

Now, all calls to this phone number are sent directly to call-screening.php. The app then
directs the call to the first number on the $numbers list.

When the call is answered, we trigger areyouhuman.xml, which waits for the person who
answered the call to hit any key on their phone.

Chapter 2

39

When any key is pressed, we can safely assume that the person who answered the phone is
a person and not an answering machine; we then connect them to iamhuman.xml that then
connects the call. If no key is pressed, we try the next number on the list.

As I mentioned, this type of recipe comes in handy for having multiple on-call agents in
departments such as Support and Sales.

Buying a phone number
Buying a phone number is an integral part of the Twilio system. If you have multiple users, you
can assign each user their own phone number.

Twilio gives you options to pass on numbers to your users, so you can actually search for
phone numbers.

You can search by postal code; patterns, such as STRINGER; or for phone numbers near
your location.

I've found this ability handy for systems with multiple users or for setting up business numbers
for various purposes, such as sales, support, or unique phone numbers for campaigns that
are being run at the time.

Getting ready
The complete source code for this recipe can be found in the Chapter2/Recipe3 folder.

How to do it...
Are you ready to learn how to buy a phone number? This recipe will take you step by step
through the process.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
?>

Now We're Cooking

40

4. Create a file on your website called buy-phone-number.php, with the following code:
<?php
 include 'Services/Twilio.php';
 include("config.php");
 $client = new Services_Twilio($accountsid, $authtoken);
?>
 <h3>Find a number to buy</h3>
 <?php if(!empty($_GET['msg'])): ?>
 <p class="msg"><?php echo htmlspecialchars($_GET['msg']); ?></
p>
 <?php endif;?>
 <form method="POST" action="search.php">
 <label>near US postal code (e.g. 94117): </label><input
type="text" size="4" name="postal_code"/>

 <label>near this other number (e.g. +14156562345): </
label><input type="text" size="7" name="near_number"/>

 <label>matching this pattern (e.g. 415***MINE): </label><input
type="text" size="7" name="contains"/>

 <input type="hidden" name="action" value="search" />
 <input type="submit" name="submit" value="SEARCH"/>
 </form>

5. Create a file on your website called search.php, with the following code:
<?php
 include 'Services/Twilio.php';
 include("config.php");
 $client = new Services_Twilio($accountsid, $authtoken);

 $SearchParams = array();
 $SearchParams['InPostalCode'] = !empty($_POST['postal_code']) ?
trim($_POST['postal_code']) : '';
 $SearchParams['NearNumber'] = !empty($_POST['near_number']) ?
trim($_POST['near_number']) : '';
 $SearchParams['Contains'] = !empty($_POST['contains'])? trim($_
POST['contains']) : '' ;
 try {
 $numbers = $client->account->available_phone_numbers-
>getList('US', 'Local', $SearchParams);
 if(empty($numbers)) {
 $err = urlencode("We didn't find any phone numbers by that
search");
 header("Location: buy-phone-number.php?msg=$err");
 exit(0);
 }
 } catch (Exception $e) {

Chapter 2

41

 $err = urlencode("Error processing search:
{$e->getMessage()}");
 header("Location: buy-phone-number.php?msg=$err");
 exit(0);
 }
?>
 <h3>Choose a Twilio number to buy</h3>
 <?php foreach($numbers->available_phone_numbers as $number){ ?>
 <form method="POST" action="buy.php">
 <label><?php echo $number->friendly_name ?></label>
 <input type="hidden" name="PhoneNumber" value="<?php echo
$number->phone_number ?>">
 <input type="hidden" name="action" value="buy" />
 <input type="submit" name="submit" value="BUY" />
 </form>
 <?php } ?>

6. Create a file on your website called buy.php, with the following code:
<?php
 include 'Services/Twilio.php';
 include("config.php");
 $client = new Services_Twilio($accountsid, $authtoken);

 $PhoneNumber = $_POST['PhoneNumber'];
 try {
 $number = $client->account->incoming_phone_numbers-
>create(array(
 'PhoneNumber' => $PhoneNumber
));
 } catch (Exception $e) {
 $err = urlencode("Error purchasing number:
{$e->getMessage()}");
 header("Location: buy-phone-number.php?msg=$err");
 exit(0);
 }
 $msg = urlencode("Thank you for purchasing $PhoneNumber");
 header("Location: buy-phone-number.php?msg=$msg");
 exit(0);
 break;
?>

Now We're Cooking

42

How it works…
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP. This library is
at the heart of your Twilio-powered apps.

In step 3, we uploaded config.php that contains our authentication information to
communicate with Twilio's API.

When a user goes to buy-phone-number.php, they are presented with a set of options.
He/she can search by the postal code, phone number, or phone patterns.

Once they perform the search, we return a list of phone numbers. The user can then buy any
number he/she chooses and that number then belongs to him/her.

Integrate this into your web apps and let your users add their own phone numbers to
their accounts.

Setting up a voicemail system
All companies need a voicemail system, from a small one-person company to a big
100-person company.

This voicemail system will be set up as one big mailbox that people can call into and leave a
message. The message is then e-mailed to you along with a transcription of the message.

Getting ready
The complete source code for this recipe can be found in the Chapter2/Recipe4 folder.

How to do it...
Let's build a simple voicemail system that can serve as a mailbox for your company.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
?>

Chapter 2

43

4. Create a file on your website called voicemail.php, with the following code:
<?php
include 'Services/Twilio.php';
include("config.php");

$myemail = 'MYEMAIL@me.com';
$message = 'I am not available right now. Please leave a
message.';
$transcribe = true;

$client = new Services_Twilio($accountsid, $authtoken);
$response = new Services_Twilio_Twiml();

$headers = 'From: voicemail@mywebsite.com' . "\r\n" .'Reply-To:
voicemail@mywebsite.com' . "\r\n" .'X-Mailer: Twilio Voicemail';

$from = strlen($_REQUEST['From']) ? $_REQUEST['From'] : $_
REQUEST['Caller'];
$to = strlen($_REQUEST['To']) ? $_REQUEST['To'] : $_
REQUEST['Called'];

if(strtolower($_REQUEST['TranscriptionStatus']) == "completed") {
 $body = "You have a new voicemail from " . ($from) . "\n\n";
 $body .= "Text of the transcribed voicemail:\n{$_
REQUEST['TranscriptionText']}.\n\n";
 $body .= "Click this link to listen to the message:\n{$_
REQUEST['RecordingUrl']}.mp3";
 mail($myemail, "New Voicemail Message from " . ($from), $body,
$headers);
 die;
} else if(strtolower($_REQUEST['TranscriptionStatus']) ==
"failed") {
 $body = "You have a new voicemail from ".($from)."\n\n";
 $body .= "Click this link to listen to the message:\n{$_
REQUEST['RecordingUrl']}.mp3";
 mail($myemail, "New Voicemail Message from " . ($from), $body,
$headers);
 die;
} else if(strlen($_REQUEST['RecordingUrl'])) {
 $response->say("Thanks. Good bye.");
 $response->hangup();
 if(strlen($transcribe) && strtolower($transcribe) != 'true') {
 $body = "You have a new voicemail from ".($from)."\n\n";
 $body .= "Click this link to listen to the message:\n{$_
REQUEST['RecordingUrl']}.mp3";

Now We're Cooking

44

 mail($myemail, "New Voicemail Message from " . ($from), $body,
$headers);
 }
} else {
 $response->say($message);
 if($transcribe)
 $params = array("transcribe"=>"true",
"transcribeCallback"=>"{$_SERVER['SCRIPT_URI']}");
 else
 $params = array();
 $response->record($params);
}
echo $response;
?>

This voicemail system is pretty basic. We repeat a message and then prompt
the caller to leave their message; we then supply an e-mail of the link to the
recording as well as the transcription, if transcribing was turned on.

5. To have a number point to this script, upload voicemail.php somewhere and then
point your Twilio phone number to it.

Chapter 2

45

Insert the URL to this page in the Voice Request URL box. Then, any calls that you
receive at this number will be processed via voicemail.php.

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP. This library is
at the heart of your Twilio-powered apps.

In step 3, we uploaded config.php that contains our authentication information to
communicate with Twilio's API.

In step 4, we uploaded voicemail.php.

Finally, in step 5, we configured a phone number to direct all calls to voicemail.php.

When a user calls into this number, we supply a voicemail box and then send you an e-mail
containing a transcription of the message, a link to the recording, and the name of the caller.

Building an emergency calling system
I'm a type-2, insulin-dependent diabetic. I also drive two hours every day—to my office and back.
So, after I spent a week in the hospital last year, I decided to set up an In Case Of Emergency
(ICE) system so that I could call one number and have it try multiple numbers at once.

Getting ready
The complete source code for this recipe can be found in the Chapter2/Recipe4 folder.

How to do it...
This emergency calling system will try a group of numbers at the same time; the first number
to answer will get connected.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
?>

Now We're Cooking

46

4. Create a file on your website called ice.php, with the following code:
<?php
session_start();
include 'Services/Twilio.php';
include("config.php");
$client = new Services_Twilio($accountsid, $authtoken);
$response = new Services_Twilio_Twiml();
$timeout = 20;
$phonenumbers = array(
 '1234567890',
 '1234567891'
);
$dial = $response->dial(NULL, array('callerId' => $fromNumber));
foreach($phonenumbers as $number){
 $dial->number($number);
}
header ("Content-Type:text/xml");
print $response;
?>

5. To have a number point to this script, upload ice.php somewhere and then point
your Twilio phone number to it.

Chapter 2

47

Insert the URL to this page in the Voice Request URL box. Then, any calls that you
receive at this number will be processed via ice.php.

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP. This library is
at the heart of your Twilio-powered apps.

In step 3, we uploaded config.php that contains our authentication information to
communicate with Twilio's API.

In step 4, we uploaded ice.php.

Finally, in step 5, we configured a phone number to direct all calls to ice.php.

We then set up the $phonenumbers array with the phone numbers in this recipe, which you
should try.

When a user calls the phone number you assigned to ice.php, it tries all the numbers in the
$phonenumber array at once and connects the call to the first one that answers.

You can store this number at a prominent location on your contacts list so that, in case of
emergencies, you can quickly dial the number. I usually save the number to a contact named
ICE and add it to favorites so that it is at the top of the list.

3
Conducting Surveys

via SMS

In this chapter we will cover the following:

 f Letting users subscribe to receive surveys

 f Building a survey tree

 f Sending a survey to your users

 f Adding tracking for each user

 f Listening to user responses

 f Building a chart of responses

Introduction
One of the common requests I receive from clients is the option to send surveys via SMS. This
chapter is based on the survey builders I've built for my clients.

Surveys are handy for seeing what features users want to build into a web app next, running
contests, and generally gathering opinions.

In the first section, you'll have a way to let your users subscribe to your surveys. Then you'll
build a survey builder that lets you view stats on sent surveys and also send new surveys.
We'll include tracking here so that you can see what responses people send back and also
give users the ability to unsubscribe from surveys.

Finally, we'll add some handy charting so that we can view the survey results on a nice chart.

This chapter will involve some SQL; you can find the sql file in the Chapter3/ folder.

Conducting Surveys via SMS

50

We're also going to use a class to use PHP's PDO library for database handling. This file is
called pdo.class.php and can be found in the Chapter3/ folder.

There are many ways to connect to databases in PHP, but I prefer the PDO driver because you
can actually quickly tell it to connect to MySQL, SQLite, or PostgreSQL. In this book, we'll be
using MySQL when we use databases.

Why use PDO instead of the standard MySQL
functions?

There are several ways to connect to a MySQL database in PHP. You can use mysql_*
functions that have become deprecated, old, and slow. You can also use mysqli_*
functions that are slowly replacing mysql_* functions; however, they are also slow.

PDO stands for PHP Data Objects; it recently replaced the original MySQL library for the
purpose of talking to databases. It also has support for PostgreSQL and SQLite.

The PDO extension defines a lightweight, consistent interface for accessing databases in
PHP. Each database driver that implements the PDO interface can expose database-specific
features as regular extension functions.

PDO is also nice because it provides a data-access abstraction layer, which means that,
regardless of the database you use, you employ the same functions to issue queries and
fetch data.

The process we use to talk to our MySQL databases is a class called pdo.class.php. We
use it to talk to our databases using the PDO library.

Our pdo.class.php file will contain the following code:

<?php

class Db {
 private $pdoInstance;
 private static $instance;
 private function __construct() {
 global $dbhost,$dbname,$dbuser,$dbpass;
 $this->pdoInstance = new PDO("mysql:host={$dbhost};dbname={$dbname
}",$dbuser,$dbpass);
 $this->pdoInstance->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_
EXCEPTION);
 $this->pdoInstance->exec("set names 'utf8'");
 }
 private function __clone() {}
 public static function singleton() {
 if (!isset(self::$instance)) {

Chapter 3

51

 $c = __CLASS__;
 self::$instance = new $c;
 }
 return self::$instance;
 }
 /* pdo functions */
 public function quote($str){
 return $this->pdoInstance->quote($str);
 }
 public function lastInsertId(){
 return $this->pdoInstance->lastInsertId();
 }
 public function query($str){
 try {
 return $this->pdoInstance->query($str);
 } catch (PDOException $e) {
 echo "Error :
".$str."
". $e->getMessage() . "
".$e->getTraceAsString();
 exit;
 }
 }
 public function exec($str){
 try {
 return $this->pdoInstance->exec($str);
 } catch (PDOException $e) {
 echo "Error :
".$str."
". $e->getMessage() . "
".$e->getTraceAsString();
 exit;
 }
 }

}

Our PDO class is a handy database wrapper that we will use for most chapters in this book.

The main functions of our class that you need to know are mentioned below.

To establish a connection, or use an already established connection, use the following
code snippet:

$pdo = Db::singleton();

This call populates the $pdo variable using a singleton. This way, we only have one database
connection and, essentially, only one instance of our database class running.

Conducting Surveys via SMS

52

This prevents incidents that may accidentally result in the creation of multiple connections,
and also prevents having to pass global variables throughout the site. Instead, we can just
call $pdo = Db::singleton(); and we return our PDO class object.

To perform queries, such as select statements, we use the following:

$result = $pdo->query("SELECT * from table");
$total = $result->rowCount();
while($row = $result->fetch()){
echo $row['name'];
}

This query will return a result set based on our query, which is stored in the $result variable.

We can then retrieve a total row count using the $result->rowCount(); function.

We can also set up a while loop to populate the $row variable with a new record on each
iteration; that is, the $row = $result->fetch() call.

If we want to perform a query that doesn't actually return any results, we can use the
following call:

$db->exec("INSERT INTO table SET name='test';");

This will let us make a call to our table and insert, update, or delete data without caring about
the result returned.

Oh, and one more thing; if you do perform an insert, you may want the last inserted ID, which
you can get by calling the following function after you call the $db->exec() function:

$pdo->lastInsertId();

This only works on inserts, not updates.

You may also notice that, in the class, we wrap all of our queries in a try{}exception{}
function, which lets us kill the system in case of errors and display the problem right away.

This has come in handy many times for me during development on projects.

Ok, now let's continue with our chapter.

Letting users subscribe to receive surveys
Before we can send surveys, we want to have a way for users to subscribe to them.

This form will let users enter their phone numbers and add them to the survey system.

You can put this page on a section of your website and allow people to sign up to receive
your surveys.

Chapter 3

53

Getting ready
The complete source code for this recipe can be found in the Chapter3/ folder of the code
bundle available at http://www.packtpub.com/support.

How to do it...
Let's build a handy system to let users subscribe to receive our surveys. Perform the
following steps:

1. Load the sql.sql file into your database.

2. Upload config.php to your website and make sure the following variables are set:
<?php
$accountsid = ''; // YOUR TWILIO ACCOUNT SID
$authtoken = ''; // YOUR TWILIO AUTH TOKEN
$fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM

$dbhost = ''; // YOUR DATABASE HOST
$dbname = ''; // YOUR DATABASE NAME
$dbuser = ''; // YOUR DATABASE USER
$dbpass = ''; // YOUR DATABASE PASS
?>

3. Upload pdo.class.php to your website.

4. Upload a file on your web server called subscribe.php, with the following content:
<?php
include("config.php");
include("pdo.class.php");
include 'Services/Twilio.php';

$action = isset($_GET['action']) ? $_GET['action'] : null;
switch($action){
 case 'save':
 $fields = array('phone_number','status');
 $pfields = array();
 $_POST['status'] = 1;
 foreach($fields as $k){
 $v = $_POST[$k];
 $pfields[] = "{$k} = '{$v}'";
 }
 $sql = "INSERT INTO subscribers SET ".implode(",",$pfields);
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $qid = $pdo->lastInsertId();

Conducting Surveys via SMS

54

 if(isset($qid) && !empty($qid)){
?>
 <p>Thank you, you have been subscribed to receive surveys</
p>
<?php
 }
 default:
?>
 <h2>Subscribe to receive surveys</h2>
 <form method="POST" action="subscribe.php?action=save">
 <table>
 <tr>
 <td>Please enter your phone number</td>
 <td><input type="text" name="phone_number" /></td>
 </tr>
 </table>
 <button type="submit">Save</button>
 </form>
<?php
 break;
}
?>

How it works...
In step 1, we set up our database; in step 2, we configured the settings.

In step 4, we uploaded subscribe.php. The subscribe.php file gives users a form where
they enter their phone number and get added to the survey. This can work inside a Sales page
on your website, where you want people to subscribe to your surveys.

I prefer letting users subscribe for surveys themselves rather than manually adding users to
surveys, as it lets us get a better grasp on the system. When we give a subscriber some sort
of incentive to sign up for a survey, they are more likely to reply to the surveys we send them.
For example, we could use this as a contest, where each subscriber is entered into a draw for
a prize, but only if they reply to our surveys.

Building a survey tree
The survey builder performs three functions: it shows you the stats on sent surveys, lets you
send unsent surveys, and lets you build your new surveys.

Surveys in this system are simple: one question and six possible answers.

Each answer will be assigned a number of 1 to 6.

Chapter 3

55

Getting ready
The complete source code for this recipe can be found in the Chapter3/ folder.

How to do it...
We've got subscribers but we need to send them what they've subscribed to. This recipe will
set up our survey builder. We'll also build a home page as part of our builder, where we can
choose to send surveys or view results.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip the file.

2. Upload the Services/ folder to your website.

3. Create a file on your website and name it survey-builder.php. The file will have
the following content:
<?php
include("config.php");
include("pdo.class.php");
include 'Services/Twilio.php';
switch($_GET['action']){
 case 'save':
 $fields = array('question','answer1','answer2','answer3','answ
er4','answer5','answer6','status');
 $pfields = array();
 foreach($fields as $k){
 $v = $_POST[$k];
 $pfields[] = "{$k} = '{$v}'";
 }
 $sql = "INSERT INTO survey SET ".implode(",",$pfields);
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $qid = $pdo->lastInsertId();
 if(isset($qid) && !empty($qid)){
?>
 <a href="send-survey.php?qid=<?=$qid?>">Send survey or
Return to home
<?php
 }
 case 'build':
 include("buildform.php");
 break;
 default:
 include("home.php");
 break;
}
?>

Conducting Surveys via SMS

56

The survey-builder.php file is the root of our system as
it handles saving surveys and displaying results.

4. Now, upload buldform.php (bearing the following content) to your website.
<h2>Prepare your survey</h2>
<form method="POST" action="survey-builder.php?action=save">
<table>
<tr>
 <td>Question</td>
 <td><input type="text" name="question" /></td>
</tr>
<?php
for($i = 1;$i<= 6;$i++){
?>
 <tr>
 <td>Answer <?=$i?></td>
 <td><input type="text" name="answer<?=$i?>" /></td>
 </tr>
<?php
}
?>
</table>
<button type="submit">Save</button>
</form>

buildform.php is the form for building surveys.

5. Upload home.php (bearing the following content) to your website:
Add new survey<hr />
<h2>Pending Surveys</h2>
<table width=100%>
<?php
$res = $pdo->query("SELECT * FROM survey WHERE status=0");
while($row = $res->fetch()){
?>
<tr>
 <td><?=$row['question']?></td>
 <td><a href="send-survey.php?qid=<?=$row['ID']?>">Send</td>
</tr>
<?php
}

Chapter 3

57

?>
</table>

The first part of this file displays surveys that have not been sent yet. The second part
displays surveys that have been sent, and a link to view responses.
<h2>Sent Surveys</h2>
<table width=100%>
<?php
$res = $pdo->query("SELECT * FROM survey WHERE status=1");
while($row = $res->fetch()){
?>
<tr>
 <td><?=$row['question']?></td>
 <td><a href="view-survey.php?qid=<?=$row['ID']?>">View
Responses</td>
</tr>
<?php
}
?>
</table>

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP, which is at
the heart of your Twilio-powered apps.

Finally, in steps 3, 4, and 5, we created survey-builder.php, buildform.php, and
home.php respectively.

When you first load the survey builder, you will get a list of surveys; you can view the stats or
send pending surveys. Once you choose to build a new survey, you will get a form that lets you
build the survey with a list of answers.

Once you save the survey, you can choose to send it right away or return to the index page.

On the index of surveys, we display unsent surveys and sent surveys.

Unsent surveys will have a link that you can use to send them, whereas sent surveys will
have a link to view the results. We'll cover both of these capabilities in upcoming recipes
in this chapter.

Conducting Surveys via SMS

58

Sending a survey to your users
Ok, we've built the survey. Now how do we send it to our subscribers?

When you're ready to send the survey to your subscribers, this recipe will gather all active
subscribers together, build the message, and send it.

It will then record the response for tracking so that we can see which answer is the popular
choice or not.

Getting ready
The complete source code for this recipe can be found in the Chapter3/ folder.

How to do it...
Ok, let's send our survey to our users. In the same place you uploaded the files in the previous
recipe, create a new file and name it send-survey.php:

<?php
include("config.php");
include("pdo.class.php");

include 'Services/Twilio.php';

$qid = $_GET['qid'];

$_SESSION['survey'] = $qid; // we store the survey in session so we
can retrieve it later

$pdo = Db::singleton();

$client = new Services_Twilio($accountsid, $authtoken);

$survey = $pdo->query("SELECT * FROM survey WHERE ID='{$qid}'");
if($survey->rowCount() >= 1){
 $survey = $survey->fetch();
 $message = array();
 $message[] = $survey['question'];
 for($i = 1;$i<= 6;$i++){
 $k = 'answer'.$i;

Chapter 3

59

 if(!empty($survey[$k])){
 $message[] = $i." - ".$survey[$k];
 }
 }
 $message[] = "Reply with the number corresponding to your answer";
 $cnt = count($message);
 $res = $pdo->query("SELECT ID,phone_number FROM subscribers WHERE
status='1'");
 while($row = $res->fetch()){
 $ph = $row['phone_number'];
 $i = 1;
 foreach($message as $m){
 $m = $m . "({$i} / {$cnt})";
 $smsg = $client->account->sms_messages->create($fromNumber,
$ph, $m);
 $sid = $smsg->sid;
 $sql = "INSERT INTO responses SET phone_number='{$ph}',question_
id='{$qid}',sms_sid='{$sid}',answer=''";
 $pdo->exec($sql);
 $i++;
 }
 }
}
?>
<h2>Survey sent!</h2>
<p>Return to home</p>

How it works...
We can choose to send a survey from the survey builder we built in the first part of this chapter.

When we send it, it loads this recipe and grabs a list of subscribers. Each subscriber is sent a
survey with a list of answers.

When we send the survey, each text message is given a unique session ID that we save
in the Responses table alongside the receiver's phone number and the ID of the survey
that was sent.

Each answer has a number in front of it; when your subscribers reply, they will send the
number back to listener.php. This is then recorded in the database and we can build
stats based on it.

Conducting Surveys via SMS

60

Adding tracking for each user
We want to be able to track each user's response to the survey we sent and this is how we will
do that.

In the previous recipe, we stored the phone number, survey ID, and the unique session ID for
each person we sent the survey to.

Now we want to store each user's response for tracking later.

Getting ready
The complete source code for this recipe can be found in the Chapter3/ folder.

How to do it...
Let's set up tracker.php that listens for responses from our subscribers using the
following steps:

1. On your web server, create a file and name it tracker.php with the following code:
<?php
include("config.php");
include("pdo.class.php");
$pdo = Db::singleton();
if(isset($_POST['Body'])){
 $phone = $_POST['From'];
 $phone = str_replace('+','',$phone);
 $action = strtolower($_POST['Body']);
 $sid = $_POST['SmsSid'];
 $sql = "UPDATE responses SET answer='{$action}' WHERE phone_
number='{$phone}' AND sms_sid='{$sid}'";
 $pdo->exec($sql);
 $msg = "Your answer has been recorded";
 print_sms_reply($msg);
}
function print_sms_reply ($sms_reply){
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
 echo "<Response>\n<Sms>\n";
 echo $sms_reply;
 echo "</Sms></Response>\n";
}
?>

Chapter 3

61

2. Finally, you have to point your Twilio phone number to it.

Insert the URL to this page in the SMS Request URL box. Then, any calls that you
receive on this number will be processed via tracker.php.

How it works...
When a user replies to a survey, the tracker.php file is triggered.

We then perform a look-up based on their phone number and unique session ID and store
their response in the Responses table.

Then, when we display the results later, we can use the responses, associate them with the
answers we sent, and get a look at what people think.

Conducting Surveys via SMS

62

Listening to user responses and commands
This recipe is the brain of the system; it handles users sending in responses and also handles
what to do if a user wants to be unsubscribed. This script will listen on a phone number and
do exactly that.

The listener.php file replaces tracker.php, and it will handle pausing, resuming, and
the responses.

Getting ready
The complete source code for this recipe can be found in the Chapter3/ folder.

How to do it...
Let's build on our previous subscriber tracker and add some extra functionality. We'll call this
recipe listener.php.

1. Upload the listener.php file (with the following content) on your web server.
<?php
include("config.php");
include("pdo.class.php");
$pdo = Db::singleton();
if(isset($_POST['Body'])){
 $phone = $_POST['From'];
 $phone = str_replace('+','',$phone);
 $action = strtolower($_POST['Body']);
 switch($action){
 case "pause":
 $sql = "UPDATE subscribers SET status=0 WHERE phone_
number='{$phone}'";
 $pdo->exec($sql);
 $msg = "We have unsubscribed you. Text 'unpause' to be
resubscribed";
 break;
 case "unpause":
 $sql = "UPDATE subscribers SET status=1 WHERE phone_
number='{$phone}'";
 $pdo->exec($sql);
 $msg = "We have resubscribed you. Text 'pause' to be
unsubscribed";
 break;
 default:

Chapter 3

63

 $sid = $_POST['SmsSid'];
 $sql = "UPDATE responses SET answer='{$action}' WHERE phone_
number='{$phone}' AND sms_sid='{$sid}'";
 break;
 }
 print_sms_reply($msg);
}
function print_sms_reply ($sms_reply){
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
 echo "<Response>\n<Sms>\n";
 echo $sms_reply;
 echo "</Sms></Response>\n";
}
?>

2. Finally, you have to point your Twilio phone number to it.

Insert the URL to this page in the SMS Request URL box. Then, any calls that you
receive on this number will be processed via listener.php.

Conducting Surveys via SMS

64

How it works...
The listener.php file serves three purposes, all depending on the value of the
$action variable:

 f If $action is "pause", the subscriber is unsubscribed and will no longer be sent
any surveys

 f If $action is "unpause", the subscriber is resubscribed and will receive
surveys again

 f Finally, if $action is anything else, it is considered a response and stores the
subscriber's answer in the database

Building a chart of responses
We've sent the survey and we've gotten responses; now we want to view results.

We create a chart of the responses we receive from our users; this is assembled onto a page.
This handy page will let us see a nice chart of responses to see what people actually think.

We're also going to use the Highcharts PHP library to handle the chart. I like Highcharts
because it's easy to customize and fits into any HTML page. The PHP library just helps
make it quicker to set up.

Our survey reports will look like the following:

In this example, we've sent a survey that asks our subscribers what their favorite colors are
and given them a choice of answers. Each answer is displayed beneath the question, along
with the total number of replies for each. As you can see in this example, the color Purple
was the most popular answer.

Chapter 3

65

The Highcharts library does have other charts in its collection but I like this one because it
puts everything right there for all to see.

Getting ready
The complete source code for this recipe can be found in the Chapter3/ folder.

How to do it...
We're sending our surveys and receiving responses. Now let's view the results.

1. Download the Highcharts PHP library from https://github.com/ghunti/
HighchartsPHP.

2. Upload the files to your server in your Services folder.

3. Upload a file on your web server called view-survey.php and containing the
following code:
<?php
include("config.php");
include("pdo.class.php");

include("Services/Highchart.php");

$chart = new Highchart();

$qid = $_GET['qid'];

$_SESSION['survey'] = $qid; // we store the survey in session
// so we can retrieve it later

$pdo = Db::singleton();

$res = $pdo->query("SELECT * FROM survey WHERE ID='{$qid}'");
while($row = $res->fetch()){
 $answers = array();
 $ares = $pdo->query("SELECT * FROM responses WHERE question_
id='{$row['id']}' and answer != ''");
 $total = $ares->rowCount();
 while($ar = $ares->fetch()){
 $k = $row['answer'.$ar['answer']];
 $answers[$k]++;
 }
}

Conducting Surveys via SMS

66

$qs = array();
$add = array();
foreach($answers as $k=>$c){
 $qs[] = $k;
 $add[] = $c;
}

$chart = new Highchart();
$chart->chart->renderTo = "container";
$chart->chart->type = "bar";
$chart->title->text = $row['question'];
$chart->subtitle->text = "";
$chart->xAxis->categories = $qs;
$chart->xAxis->title->text = null;
$chart->yAxis->min = 0;
$chart->yAxis->title->text = "Votes";
$chart->yAxis->title->align = "high";

$chart->tooltip->formatter = new HighchartJsExpr("function() {
return '' + this.series.name +': '+ this.y;}");

$chart->plotOptions->bar->dataLabels->enabled = 1;
$chart->legend->enabled = false;
$chart->credits->enabled = false;

$chart->series[] = array('name' => "Votes",'data' => $add);
?>
<html>
 <head>
 <title><?=$row['question']?></title>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<?php
 foreach ($chart->getScripts() as $script) {
 echo '<script type="text/javascript" src="' . $script .
'"></script>';
 }
?>
 </head>
 <body>
 Return to home or Add new survey<hr />

Chapter 3

67

 <div id="container"></div>
 <script type="text/javascript">
 <?php echo $chart->render("chart1"); ?>
 </script>
 </body>
</html>

How it works...
In steps 1 and 2, we downloaded and installed the Highcharts PHP library.

In step 3, we uploaded view-survey.php.

We've just built one of the most important aspects of our survey tool—a way to graphically
show our responses.

We first grab all answers for the question and then we grab all responses. Then we output the
data in a nice bar chart.

Using the Highcharts library, we can change this chart to any type we wish pretty quickly. I find
the bar chart to be pretty useful, so I'm giving you guys the bar chart to use.

4
Building a Conference

Calling System

In this chapter we will cover:

 f Scheduling a conference call

 f Sending an SMS to all participants at the time of the call

 f Starting and recording a conference

 f Joining a conference call from the web browser

 f Monitoring the conference call

 f Muting a participant

Introduction
Conference calling is an important aspect of most businesses. This chapter will help you build
a great conference calling app that you can use. It will build a full-fledged conference calling
app with multiple conference rooms that people can call.

This chapter will involve some SQL. You can find it in the sql.sql file in the Chapter4/
folder. We're keeping the conference database simple; when we schedule a conference,
we enter the names and phone numbers of the participants.

The participants will get a text message with a phone number to call and a room number to
enter an hour before the conference begins. This gives everyone time to get situated. We'll
also let participants enter a room number and join a conference from their web browsers.

Building a Conference Calling System

70

We're also going to build three interesting interfaces: the first lets a person participate in a
conference from the web; the second mutes a participant so that they can monitor what's
happening but not participate; and the third will give you the ability to mute and unmute
callers, which can be handy in cases of seminars.

Scheduling a conference call
The conference call scheduler is going to let you enter details to schedule a conference call.
This will let you set up participants, the moderator, and when the call will take place.

Getting ready
The complete source code for this recipe can be found in the Chapter4/ folder.

How to do it...
Ok, ready? For our first recipe, we're going to build the scheduling and conference
management sections.

1. Download the Twilio Helper Library from (https://github.com/twilio/
twilio-php/zipball/master) and unzip it.

2. Upload the Services/ folder to your website.

3. Add sql.sql to your database.

4. Upload config.php to your website and make sure the following variables are set:
<?php
$accountsid = ''; // YOUR TWILIO ACCOUNT SID
$authtoken = ''; // YOUR TWILIO AUTH TOKEN
$fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
$conferenceNumber = ''; // Number to call into.
$dbhost = ''; // YOUR DATABASE HOST
$dbname = ''; // YOUR DATABASE NAME
$dbuser = ''; // YOUR DATABASE USER
$dbpass = ''; // YOUR DATABASE PASS
?>

5. Upload pdo.class.php to your website.

6. Create a file on your website called schedule.php and add the following code to it:
<?php
include("config.php");
include("pdo.class.php");
include 'Services/Twilio.php';

Chapter 4

71

include("functions.php");

$action = isset($_GET['action']) ? $_GET['action'] : null;

switch($action){
 case 'save':
 extract($_POST);
 $timestamp = strtotime($timestamp);
 $sql = "INSERT INTO conference
 SET`name`='{$name}',`timestamp`='{$timestamp}'";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $qid = $pdo->lastInsertId();
 if(isset($qid) && !empty($qid)){
 foreach($call_name as $k=>$cname){
 $cphone = $call_phone[$k];
 $cstatus = $call_status[$k];
 $sql = "INSERT INTO callers SET
 conference_id = '{$qid}',`name` =
 '{$cname}',`phone_number' =
 '{$cphone}',status='{$cstatus}'";
 $pdo->exec($sql);
 }
 }
 break;
 case 'addnew':
 include("form.php");
 break;
 default:
 include("home.php");
 break;
}

7. Now let's create a file on your website called functions.php and add the following
code to it:
<?php
functiongetRecording($caSID){
global $accountsid,$authtoken;
 $version = '2010-04-01';
 $url = "https://api.twilio.com/2010-04-01/Accounts/
 {$accountsid}/Calls/{$caSID}/Recordings.xml";
 $ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $url);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

Building a Conference Calling System

72

curl_setopt($ch, CURLOPT_USERPWD, "{$accountsid}:{$authtoken}");
curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
 $output = curl_exec($ch);
 $info = curl_getinfo($ch);
curl_close($ch);
 $output = simplexml_load_string($output);
echo "<table>";
foreach ($output->Recordings->Recording as $recording) {
echo "<tr>";
echo "<td>".$recording->Duration." seconds</td>";
echo "<td>".$recording->DateCreated."</td>";
echo '<td><audio src="https://api.twilio.com/2010-04-01/
Accounts/'.$sid.'/Recordings/'.$recording->Sid.'.mp3" controls
preload="auto" autobuffer></audio></td>';
echo "</tr>";
 }
echo "</table>";
}
?>

8. Now, we'll create home.php, which will let us display conference calls, and either
monitor or review recordings. Add the following code to it:
<ahref="schedule.php?action=addnew">Schedule new conference<hr
/>
<h2>Conferences</h2>
<table width=100%>
<?php
 $res = $pdo->query("SELECT * FROM conference ORDER BY
 `timestamp`");
 while($row = $res->fetch()){
 $conference = $client->account->conferences-
 >getIterator(0, 50, array("FriendlyName" =>
 $row['ID']));
?>
 <tr>
 <td><?=$row['name']?></td>
 <td><?=date("m-d-Y ",$row['timestamp'])?></td>
 <td>
<?php if($conference->status == "in-progress") { ?>
 <ahref="monitor.php?room=<?=$row['ID']?>">Monitor
 |
 <ahref="view.php?room=<?=$row['ID']?>">View
 Listeners
<?php }else if($conference->status == 'completed') {
 getRecording($conference->sid);

Chapter 4

73

}else{ ?>
 Not Yet Started
<?php } ?>
 </td>
 </tr>
<?php
 }
?>
 </table>

9. Finally, we'll create form.php, which is the actual form used to schedule conference
calls. Add the following code to it:
<h2>Prepare your conference</h2>
<form method="POST" action="schedule.php?action=save">
<table>
<tr>
 <td>Name</td>
 <td><input type="text" name="name" /></td>
</tr>
<tr>
 <td>Date & Time</td>
 <td>
 <input type="text" name="timestamp"
 placeholder="DD/MM/YY HH:MM"/>
 </td>
</tr>
</table>
<h2>Add Participants</h2>
<table>
<?php
 $limit = 6;
 for($i = 0;$i< $limit;$++){
?>
 <tr>
 <td>Name</td>
 <td><input type="text" name="call_name[]" /></td>
 <td>Phone Number</td>
 <td><input type="text" name="call_phone[]" /></td>
 <td>Moderator?</td>
 <td>
 <select name="call_status[]">
 <option value="0">No</option>
 <option value="1">Yes</option>

Building a Conference Calling System

74

 </select>
 </td>
 </tr>
<?php
 }
?>
</table>
<button type="submit">Save</button>
</form>

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP; this library
is at the heart of your Twilio-powered apps. In step 3, we loaded our database schema into
our database.

In step 4, we uploaded config.php, which contains our authentication information to
talk to Twilio's API. In step 5, we uploaded pdo.class.php, which is our class that talks
to the database.

Finally, in steps 6 and 7, we created schedule.php. This shows you your scheduled
conference calls and lets you add new conferences.

In the list of scheduled conference calls, it will check the conference status with Twilio and let
you monitor or mute conferences that are in progress or let you view recordings on completed
conference calls.

Sending an SMS to all participants at the
time of the call

Once it's time to start the conference, you want everyone to know about it. The best way to do
that is to send a text message with a number to call to.

This recipe will check once an hour for any upcoming conferences and send a text message to
all participants to let them know about it.

Getting ready
The complete source code for this recipe can be found in the Chapter4/ folder.

Chapter 4

75

How to do it...
This next recipe will create a notification system that will run on an hourly cron job and
send an SMS reminder to all participants, and will also have instructions to connect to
the conference call.

1. In the same place you uploaded the previous recipe, upload notify.php as follows:
<?php
include("config.php");
include("pdo.class.php");
include 'Services/Twilio.php';

$pdo = Db::singleton();
$client = new Services_Twilio($accountsid, $authtoken);

$curtime = strtotime("+1 hour");
$sql = "SELECT * FROM conference where `timestamp` >
$curtime AND notified = 0";

$res = $pdo->query($sql);
while($row = $res->fetch()){
 $msg = "You have a conference call starting in one
 hour. Please call into ".$conferenceNumber." and enter
 ".$row['ID']." as your room";
 $pdo->exec("UPDATE conference SET notified = 1,status=1
 WHERE ID='{$row['ID']}';");
 $sql = "SELECT phone_number FROM callers where
 conference_id='{$row['ID']}";
 $ares = $pdo->query($sql);
 while($arow = $ares->fetch()){
 $ph = $arow['phone_numer'];
 $client->account->sms_messages->create(
 $fromNumber, $ph, $msg);
 }
}

2. Set notify.php to run on an hourly cron as follows:
0 * * * * /usr/bin/curl -I "http://www.mywebsite.com/notify.php"

Building a Conference Calling System

76

How it works...
First, we populate the $curtime variable with what the time will be one hour from the
present. Then we grab all conferences that are due to start in that time and send a text
message to the participants. We also set the conference's status field to 1, which tells the
moderator that he/she is allowed to log into it.

Why do we send this one hour earlier instead of exactly when it is scheduled? Excellent
question, and one that I've learned to incorporate after plenty of trial and error. If you leave
reminders for exactly when you want people to do something, they will most often be late. So,
giving them an hour's notice gives everyone a better cushion.

Starting and recording a conference
It's time to start the conference. We've notified everyone about it; now we have to handle what
happens when they actually call in.

This conference system has multiple rooms, each with a unique ID. So when people call in,
they'll enter a room number, which will add them to that conference room.

Getting ready
The complete source code for this recipe can be found in the Chapter4/ folder.

How to do it...
Ok, this is the big one. This recipe will help us actually start the conference and record the
conference as soon as it starts. By recording it, we can go back to it at another time.

We're going to create four files in this recipe.

1. Create a file called start.php and add the following code to it:
<?php
session_start();
include("config.php");
include("pdo.class.php");
include 'Services/Twilio.php';

$pdo = Db::singleton();
$client = new Services_Twilio($accountsid, $authtoken);

if(strlen($_REQUEST['Digits'])){
 $_SESSION['room'] = $room = $_REQUEST['Digits'];

Chapter 4

77

 $from = strlen($_REQUEST['From']) ? $_REQUEST['From'] :
 $_REQUEST['Caller'];
 $to = strlen($_REQUEST['To']) ? $_REQUEST['To'] :
 $_REQUEST['Called'];

 if(strlen($from) == 11 &&substr($from, 0, 1) == "1") {
 $from = substr($from, 1);
 }
 $sql = "SELECT * FROM conference where `ID` =
 '{$room}'";
 $res = $pdo->query($sql);
 $row = $res->fetch();
 // is this user a moderator?
 $sql = "SELECT * FROM callers where `conference_id` =
 '{$room}' AND `phone_number`='{$from}' AND
 status='1' ";
 $ares = $pdo->query($sql);
 $arow = $ares->fetch();
 if($arow['phone_number'] == $from){
 $_SESSION['mod'] = true;
 header("Location: moderator.php");
 die;
 }else{
 $_SESSION['mod'] = false;
 header("Location: speaker.php");
 die;
 }
}
header('Content-type: text/xml');
echo '<?xml version="1.0" encoding="UTF-8"?>';
?>
<Response>
<Gather numDigits="3" action="start.php">
<Say>Press enter the room number to join your conference</Say>
</Gather>
</Response>

2. Now, create a file called speaker.php and add the following code to it:
<?php
session_start();
include("config.php");
include("pdo.class.php");
include 'Services/Twilio.php';

$pdo = Db::singleton();

Building a Conference Calling System

78

$client = new Services_Twilio($accountsid, $authtoken);

$room = $_SESSION['room'];
$sql = "SELECT * FROM conference where `ID` = '{$room}'";
$res = $pdo->query($sql);
$row = $res->fetch();
header('Content-type: text/xml');
echo '<?xml version="1.0" encoding="UTF-8"?>';
?>
<Response>
<Dial>
<Conference startConferenceOnEnter='false'><?=$row['ID']?></
Conference>
</Dial>
</Response>

3. Create a file called moderator.php and add the following code to it:
<?php
session_start();
include("config.php");
include("pdo.class.php");
include 'Services/Twilio.php';

$pdo = Db::singleton();
$client = new Services_Twilio($accountsid, $authtoken);

$room = $_SESSION['room'];
$sql = "SELECT * FROM conference where `ID` = '{$room}'";
$res = $pdo->query($sql);
$row = $res->fetch();
header('Content-type: text/xml');
echo '<?xml version="1.0" encoding="UTF-8"?>';
?>
<Response>
<Dial Record=true>
<Conference
startConferenceOnEnter='true'
endConferenceOnExit='true' muted="false">
<?=$row['ID']?>
</Conference>
</Dial>
</Response>

Chapter 4

79

4. Now log in to your Twilio account, go to your phone numbers, select a phone
number that people will call, and insert the URL for start.php into the box
for Voice as follows:

Now, any calls that you receive at this number will be processed via start.php.

How it works...
In steps 1, 2, and 3, we created three files: start.php, speaker.php, and moderator.php.
In step 4, we set a phone number that handles all incoming calls for the conference system.

When a caller calls the number we entered, Twilio calls start.php, which then prompts them
to enter a room number; then we check to see if the phone number they are calling from has
been set as a moderator's number or not.

If they are a moderator, we call moderator.php and start the conference; otherwise, we call
speaker.php and listen for a moderator to join.

Building a Conference Calling System

80

Joining a conference call from the web
browser

Some attendees may not want to use their phones for the conference; maybe they want to
participate from their computers. This recipe will let them join the same conference via their
web browser.

Getting ready
The complete source code for this recipe can be found in the Chapter4/ folder.

How to do it...
Let's build a browser phone system that will let attendees join a conference call from their web
browsers. We will give users the ability to enter a code and join the room of their choice.

1. First, since this is using the Twilio Client, you need to set up a TwiML app under
your account.

2. Click on the Create TwiML app button and enter a name for your app. Also, you'll need
to enter a URL for Voice. In this case, set it to the URL where you have uploaded dial-
conference.php; that is, http://MYWEBSITE.COM/join-conference.php.

Chapter 4

81

3. Now go back to the application list and you will see your new app. Look at the line
directly beneath the name of your app; that is your app's SID. Copy that, as you will
need it for this recipe.

Building a Conference Calling System

82

4. Create a file called join.php and add the following code to it:
<?php
include("config.php");
include("pdo.class.php");
include 'Services/Twilio.php';
require_once('Services/Twilio/Capability.php');
$pdo = Db::singleton();
$API_VERSION = '2010-04-01';

$APP_SID = 'YOUR APP SID';

$client = new Services_Twilio($accountsid, $authtoken);
include("joinjs.php");
?>
<form method="POST" id="joinform">
 <label>Press enter the room number to join your
 conference</label>

 <input type="text" name="room" id="room" />
 <button type="submit">Join</button>
</form>
<div id="choices" style="display:none;">
 <ahref="#" id="linkbtn">Leave
</div>

5. Let's create joinjs.php as follows:
<?php
$token = new Services_Twilio_Capability($accountsid, $authtoken);
$token->allowClientOutgoing($APP_SID);
?>
<script type="text/javascript" src="https://ajax.googleapis.com/
ajax/libs/jquery/1.6.2/jquery.min.js"></script>
<script type="text/javascript" src="//static.twilio.com/libs/
twiliojs/1.1/twilio.min.js"></script>
<script type="text/javascript">
var conn = null;
$(document).ready(function() {
Twilio.Device.setup("<?php echo $token->generateToken();?>");
 $("#joinform").submit(function(e){
 var name = $("#room").val();
 $("#joinform").hide();
 $("#choices").show();

Chapter 4

83

joinConference(name, $("#linkbtn"));
 e.preventDefault();
 return false;
 });
 $("li> a").click(function() {
name = $(this).prev().text();
monitorConference(name, $(this));
 });
});
functionjoinConference(name, link) {
if (conn == null){
conn = Twilio.Device.connect({ 'name' : name });
link.text('Leave');
link.click(function() {
leaveConference(link);
 });
 }
}
functionleaveConference(link) {
conn.disconnect();
conn = null;
 $("#choices").hide();
 $("#joinform").show();
}
</script>

6. Now let's create a file called join-conference.php and add the following
code to it:
<?php
header('Content-type: text/xml');
echo '<?xml version="1.0" encoding="UTF-8"?>';
?>
<Response>
<Dial>
<Conference startConferenceOnEnter='false'><?php echo
htmlspecialchars($_REQUEST['name']); ?>
</Conference>
</Dial>
</Response>

Building a Conference Calling System

84

How it works...
In steps 1, 2, and 3, we created a new TwiML app that pointed to the join-conference.php
file. This will tell any applications that use this app's SID what file to call.

In steps 4, 5, and 6, we created join.php, which will display all conferences that
are currently in progress and let you listen in on any of them. When you join, you are
automatically a part of the conference.

Monitoring the conference call
We are also going to add the ability to monitor and listen in on a conference call from the
website. This will let us silently listen in on calls.

Monitoring calls can be useful for training purposes; for example, to let someone sit and see
how a call works.

Getting ready
The complete source code for this recipe can be found in the Chapter4/ folder.

How to do it...
Ok, let's build our "big brother" conference monitoring system.

1. First, since this is using the Twilio Client, you need to set up an TwiML app under
your account.

Chapter 4

85

2. Click on the Create TwiML app button and enter a name for your app. Also, you'll need
to enter a URL for Voice. In this case, set it to the URL where you have uploaded dial-
conference.php; that is, http://MYWEBSITE.COM/dial-conference.php.

3. Now go back to the application list and you will see your new app. Look at the line
directly beneath the name of your app; that is your app's SID. Copy that, as you will
need it for this recipe.

Building a Conference Calling System

86

4. Create a file called monitor.php and add the following code to it:
<?php
include("config.php");
include("pdo.class.php");
include 'Services/Twilio.php';
require_once('Services/Twilio/Capability.php');
$pdo = Db::singleton();
$API_VERSION = '2010-04-01';

$APP_SID = 'YOUR APP SID';

$client = new Services_Twilio($accountsid, $authtoken);
include("monitorjs.php");
$conferences = $client->account->conferences->getPage(0, 50,
array('Status' => 'in-progress'));
echo '<p>Found '.$conferences->total.' conference(s)</p>';
echo '';
foreach ($conferences as $conference) {
 echo ''.$conference->friendly_name.'Listen in';
}
echo '';

5. Let's create monitorjs.php and add the following code to it:
<?php
$token = new Services_Twilio_Capability($accountsid, $authtoken);
$token->allowClientOutgoing($APP_SID);
?>
<script type="text/javascript" src="https://ajax.googleapis.com/
ajax/libs/jquery/1.6.2/jquery.min.js"></script>
<script type="text/javascript" src="//static.twilio.com/libs/
twiliojs/1.1/twilio.min.js"></script>
<script type="text/javascript">
var conn = null;
$(document).ready(function() {
Twilio.Device.setup("<?php echo $token->generateToken();?>");
 $("li> a").click(function() {
 name = $(this).prev().text();
 monitorConference(name, $(this));
 });
});
functionmonitorConference(name, link) {
if (conn == null){
conn = Twilio.Device.connect({ 'name' : name });

Chapter 4

87

link.text('Leave');
link.click(function() {
leaveConference(link);
 });
 }
}
functionleaveConference(link) {
conn.disconnect();
conn = null;
link.text('Listen in');
link.click(function() {
name = link.prev().text();
monitorConference(name, link);
 })
}
</script>

6. Now, let's create a file called dial-conference.php and add the following code
to it:
<?php
header('Content-type: text/xml');
echo '<?xml version="1.0" encoding="UTF-8"?>';
?>
<Response>
<Dial>
<Conference muted="true" beep="false"><?php echo
htmlspecialchars($_REQUEST['name']); ?></Conference>
</Dial>
</Response>

How it works...
In steps 1, 2, and 3, we created a new TwiML app that pointed to the dial-conference.php
file.

In steps 4, 5, and 6, we created monitor.php, which will display all conferences that are
currently in progress and let you listen in on any of them. When you join, you are muted,
as we want this to be a listener post only.

Building a Conference Calling System

88

Muting a participant
Sometimes, when you get a list of conference participants, it's nice to be able to mute
someone. Maybe there's too much noise on one end, a participant is being disruptive, or the
moderator only wants one speaker to talk (in the case of seminars). This recipe lets you mute
and unmute your callers.

Getting ready
The complete source code for this recipe can be found in the Chapter4/ folder.

How to do it...
We're going to create three files in this recipe.

1. The first file is view.php. Add the following code to it:
<?php
include("config.php");
include("pdo.class.php");
include 'Services/Twilio.php';
$pdo = Db::singleton();
$client = new Services_Twilio($accountsid, $authtoken);
?>
<table>
<thead>
<tr>
 <td>Participant</td>
 <td>Muted</td>
 <td></td>
</thead>
<tbody>
<?php
foreach ($client->account->conferences->getIterator(0, 50,
array("Status" => "in-progress","FriendlyName" => $_GET['room']))
as $conference) {
 foreach ($client->account->conferences->get($conference->sid
)->participants as $participant) {
?>
 <tr>
 <td>
 <?=$participant->sid?>
 </td>
 <td>

Chapter 4

89

 <?=($participant->muted ? "Yes" : "No")?>
 </td>
 <td>
 <?php if($participant->muted){ ?>
 <ahref="unmute.php?sid=<?=$_GET['room']?>
 &cid=<?=$participant->sid?>">Unmute
 <?php }else{ ?>
 <ahref="mute.php?sid=<?=$_GET['room']?>
 &cid=<?=$participant->sid?>">Mute
 <?php } ?>
 </td>
 </tr>
<?php
 }
}
?>
</tbody>
</table>

2. Next, we create mute.php and add the following code to it:
<?php
 include("config.php");
 include("pdo.class.php");
 include 'Services/Twilio.php';

 $pdo = Db::singleton();
 $client = new Services_Twilio($accountsid, $authtoken);

 $participant = $client->account->conferences->get(
 $_GET['sid'])->participants->get($_GET['cid']);
 $participant->update(array(
 "Muted" => "True"
));
 header("Location:view.php?room=".$_GET['sid']);
 exit;

3. And finally we create unmute.php and add the following code to it:
<?php
 include("config.php");
 include("pdo.class.php");
 include 'Services/Twilio.php';

 $pdo = Db::singleton();

Building a Conference Calling System

90

 $client = new Services_Twilio($accountsid, $authtoken);

 $participant = $client->account->conferences->get($_GET['sid']
)->participants->get($_GET['cid']);
 $participant->update(array(
 "Muted" => "False"
));
 header("Location:view.php?room=".$_GET['sid']);
 exit;

How it works...
In step 1, we create view.php, which displays a list of participants in a conference room and
the option to mute or unmute the caller. In step 2, we created mute.php, which is the file that
gets called when we choose to mute a caller; once it executes, the caller finds himself muted.
In step 3, we created unmute.php, which lets us unmute a caller.

It is handy for a moderator to be able to mute or unmute people taking part in a conference.
Especially if the conference is a seminar.

5
Combining Twilio with

Other APIs

In this chapter, you will learn:

 f Searching for local businesses via text

 f Getting the local weather forecast

 f Searching for local movie listings

 f Searching for classifieds

 f Getting local TV listings

 f Searching Google using SMS

 f Searching the stock market

 f Getting the latest headlines

Introduction
People love to perform local searches. Being able to quickly locate local businesses or local
movie listings, find something for sale near them, check the weather, or get TV listings are
all local items that people want to look up all the time.

We're also going to let people perform Google searches, grab stock market quotes, and
retrieve the latest headlines. We are going to accomplish this using various APIs, such as
Yahoo's YQL, Yahoo Weather, Yelp.com, Craigslist, Google, Yahoo Finance, and Yahoo News.

We will use Application Programming Interface (API); in fact, Twilio itself is an API and we've
been using APIs all along. Why use APIs? The answer is pretty simple—you use APIs to gather
information from other sources to build apps that are useful to your users.

Combining Twilio with Other APIs

92

What is YQL? Yahoo Query Language (YQL) is an API that lets us talk to other APIs in a
method similar to SQL. We'll be using this to get the local weather, find local businesses,
and also search for classifieds. You can learn more about YQL at http://developer.
yahoo.com/yql/.

With YQL, you can send queries such as database queries; for example, to get information on
San Francisco, you will write your query like this:

select name, country from geo.places where text="san francisco, ca"

Then, you'd make your call either via PHP or using JavaScript. You can also test your query
directly from the YQL Console at http://developer.yahoo.com/yql/console/.

You can see the results of any query by loading it in your browser:

http://query.yahooapis.com/v1/public/yql?q=select name, country from
geo.places where text="san francisco, ca"&format=json

This URL returns a JSON string based on your query. I've worked with APIs for years on various
projects; YQL is the one I return to often, for its sheer power.

We'll also be using other APIs to look up local movies and TV listings. And finally, we'll use
Google's API to perform a Google search. We are also going to make this work by simply
having someone text with keywords; for example, texting "find pizza" will return pizza
restaurants near their current location

How are we going to do this? Simple, Twilio sends us information about where the texter is
located when they send us the text message:

[Body] => find pizza
[ToZip] => 98101
[FromState] => BC
[ToCity] => SEATTLE
[SmsSid] => SM317729315466f59785223dd04e420728
[ToState] => WA
[To] => +12065042754
[ToCountry] => US
[FromCountry] => CA
[SmsMessageSid] => SM317729315466f59785223dd04e420728
[ApiVersion] => 2010-04-01
[FromCity] => PENTICTON
[SmsStatus] => received
[From] => +12502213321
[FromZip] =>

This array tells us the city that the caller is from via the FromCity and FromState variables.
From here, we can perform searches using YQL or other APIs to find local the information.
We'll mostly use the Body, FromCountry, FromCity, and FromState fields in our search.

Chapter 5

93

Searching for local businesses via text
Ever need to find a local business? You want to know where to find the nearest pizza, sushi,
or maybe even a plumber? This script will let you type in find sushi on your phone and
returns local sushi restaurants. Similarly, typing in find computers will find any local
computer stores.

We'll use Yahoo's YQL system to perform a local lookup using the Yelp.com API. This way, we're
actually using two APIs at one time. YQL lets us perform queries rapidly, so you'll find
the speed impressive.

Getting ready
The complete source code for this recipe can be found in the Chapter5/ folder.

How to do it...
Ok, let's set up our initial app that will let us use Yahoo's YQL service to search for local
businesses and restaurants.

1. Download the Twilio Helper Library from (https://github.com/twilio/
twilio-php/zipball/master) and unzip it.

2. Upload the Services/ folder to your website.

3. Upload the config.php file to your website and make sure the following variables
are set:
<?php
$accountsid = ''; // YOUR TWILIO ACCOUNT SID
$authtoken = ''; // YOUR TWILIO AUTH TOKEN
$fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
?>

4. Create a file called functions.php and add the following code to it:
<?php
function remEntities($str) {
 return str_replace("‎","", str_replace(" ","",$str));
}
function print_sms_reply ($sms_reply){
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
 echo "<Response>\n";
 if(!is_array($sms_reply)){
 echo '<Sms>'.$sms_reply.'</Sms>';
 }else{

Combining Twilio with Other APIs

94

 $cnt = count($sms_reply);
 $i = 1;
 foreach($sms_reply as $line){
 $line = $line." (".$i."/".$cnt.")";
 echo '<Sms>'.$line.'</Sms>';
 $i++;
 }
 }
 echo "</Response>\n";
}
function get_query($url){
 $curl = curl_init($url);
 curl_setopt($curl,CURLOPT_HEADER,false);
 curl_setopt($curl,CURLOPT_RETURNTRANSFER,true);
 $data = curl_exec($curl);
 curl_close($curl);
 return $data;
}
function getResultFromYQL($yql_query, $env = '') {
 $yql_base_url =
 "http://query.yahooapis.com/v1/public/yql";
 $yql_query_url = $yql_base_url . "?q=" .
 urlencode($yql_query);
 $yql_query_url .= "&format=json";
 if ($env != '') {
 $yql_query_url .= '&env=' . urlencode($env);
 }
 $session = curl_init($yql_query_url);
 curl_setopt($session, CURLOPT_RETURNTRANSFER, true);
 $json = curl_exec($session);
 curl_close($session);
 return json_decode($json);
}

The functions.php file is the priority file; it handles various functions related to
talking to YQL and responding to texts. Two heavily used functions in this file are
get_query and getResultFromYQL; these are two functions I use quite a lot
for talking to APIs.

5. Create a file called local.php and add the following code to it:
<?php
include('Services/Twilio.php');
include("config.php");
include("functions.php");
if(isset($_POST['Body'])){

Chapter 5

95

 $phone = $_POST['From'];
 $body = $_POST['Body'];
 $from = $_POST['FromCity'].', '.$_POST['FromState'];
 $body = strtolower($body);
 $keywords = explode(" ",$body);
 $key = $keywords[0];
 unset($keywords[0]);
 $keywords = implode(" ",$keywords);
 if(file_exists("pages/".$key.".php")){
 // if a file matching this key exists in the pages folder.
 For example: movies, weather, find, tv
 include("pages/".$key.".php");
 }else{
 $lines = array();
 $lines[] = "Hi, thanks for using local search.
 Please use the following keywords to perform your
 search.";
 $lines[] = "find 'keyword' to search for local
 businesses or restaurants";
 $lines[] = "movies to find local movies";
 $lines[] = "weather to get the local forecast";
 $lines[] = "tv to get the local tv listings and
 see what's on right now";
 $lines[] = "classifieds 'keyword' to search local
 classifieds";
 $lines[] = "search 'keyword' to search Google";
 $lines[] = "stock 'stock symbol' to search the
 stock market";
 $lines[] = "news to return the latest headline
 news";
 print_sms_reply ($lines);
 }
}
exit;

6. Create a file called find.php in a folder called pages and add the following
code to it:
<?php
$results = find($from, $keywords);
$cnt = count($results->businesses);
$i = 1;
$reply = array();
foreach($results->businesses as $business){
 $business->name = str_replace(" & "," and ",$business->name);

Combining Twilio with Other APIs

96

 $msg = $business->name."\n".$business->address1."\
 n".$business->city ." ".$business->state .",
 ".$business->zip;
 $reply[] = $msg;
 $i++;
}
print_sms_reply($reply);
function find($location, $query){
$yelpql = "use 'http://github.com/spullara/yql-tables/raw/
master/yelp/yelp.review.search.xml' as yelp; select * from
yelp where term='".$query."' and location='".$location."' and
ywsid='AMP_5mIt_VCZiw7xYK0DJw'";
$result = getResultFromYQL($yelpql);
return $result->query->results;
}
?>

7. To have a number point to this script, upload local.php somewhere and then point
your Twilio phone number to it.

Insert the URL in the box for SMS as shown in the previous screenshot. Any text
messages that you receive at this number thereafter will be processed via local.php.

Chapter 5

97

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP; this library is
the heart of your Twilio-powered apps.

In step 3, we loaded our database schema into our database. In step 3, we uploaded
config.php that contains our authentication information to talk to the Twilio's API.

In steps 4, 5, and 6, we uploaded the functions.php, local.php, and find.php
files. And finally, in step 7, we set up our local service on a Twilio phone number. When
local.php receives a message, it checks the first word. If it is "find," we assume they
are looking for a business.

We then use Yahoo's YQL system to query Yelp.com's API and return all businesses that match
the keyword searched in the location the person's phone number came from. The query we
used to find local businesses is as follows:

use 'http://github.com/spullara/yql-tables/raw/master/yelp/yelp.
review.search.xml' as yelp; select * from yelp where term='".$query."'
and location='".$location."' and ywsid='AMP_5mIt_VCZiw7xYK0DJw'";

This query tells YQL to use use Yelp.com and search their API for any business in our location
that matches the term given; for example, texting in "find sushi" will return a text for each of
the four sushi restaurants in my home town.

You may also notice that we used a key called ywsid; this is a unique developer key used for
Yelp API calls. If you want your own key, you can go to http://www.yelp.com/developers
and generate one.Then, you can replace the key used by this query with your own.

The use command employed by this query is what we used to call an open table. Open
tables are XML files that people can write to define their own YQL queries. If you open
http://yqlblog.net/samples/helloworld.xml in a browser, it will show you
an XML file as follows:

<?xml version="1.0" encoding="UTF-8"?>
<table xmlns="http://query.yahooapis.com/v1/schema/table.xsd">
 <meta>
 <sampleQuery>select * from {table} where a='cat' and b='dog';
 </sampleQuery>
 </meta>
 <bindings>
 <select itemPath="" produces="XML">
 <urls>
 <url>http://fake.url/{a}</url>
 </urls>
 <inputs>

Combining Twilio with Other APIs

98

 <key id='a' type='xs:string' paramType='path'
 required="true" />
 <key id='b' type='xs:string' paramType='variable'
 required="true" />
 </inputs>
 <execute><![CDATA[
 // Your javascript goes here. We will run it on our servers
 response.object = <item>
 <url>{request.url}</url>
 <a>{a}
 {b}
 </item>;
]]></execute>
 </select>
 </bindings>
</table>

This open table creates a table called helloworld and defines which keys you pass to it. So,
in this example, we've set up two keys, a and b, and we've set them both as required. When
this is called, it is seen as follows:

use "http://yqlblog.net/samples/helloworld.xml";select * from
helloworld where a="cat" and b="dog";

We return three fields inside the item record as follows:

<item>
 <url>http://fake.url/cat</url>
 <a>cat
 dog
</item>

Notice what I mentioned above? We passed the a key as cat and the b key as dog, and the
query returned the item with a URL containing the value of the a key and then the value of a
and b as separate records.

Getting the local weather forecast
The weather lookup portion of this app will work in a similar way to the find portion. When we
send a text saying "weather", it returns today's and tomorrow's forecast. We're going to use
Yahoo's own weather lookup API for this is already built into Yahoo's YQL system.

We're also going to make use of Yahoo's geo places system that will take our phone
number's registered location and return a unique ID that the weather service will use
to perform the lookup.

Chapter 5

99

Our query will actually return two messages. The first message is the current forecast; the
second message is the forecast for tomorrow.

Getting ready
The complete source code for this recipe can be found in the Chapter5/ folder.

How to do it...
Now, this recipe will extend our search system to include a local weather lookup. Create a file
called weather.php in the pages folder and add the following code to it:

<?php
$location = whereami($from);
$results = weather($location->woeid);
$forecast = $results->channel->item->forecast;
$today = $forecast[0];
$tomorrow = $forecast[1];
$reply = array();
$reply[] = "Current Conditions: ".$today->text."\nHigh: ".$today-
>high.", Low: ".$today->low;
$reply[] = "Tomorrow: ".$tomorrow->text."\nHigh: ".$tomorrow->high.",
Low: ".$tomorrow->low;
print_sms_reply($reply);

function whereami($location){
$yql = 'select * from geo.places where text="'.$location.'"';
 $result = getResultFromYQL($yql);
 return $result->query->results->place;
}
function weather($woeid){
 $yql = 'select * from weather.forecast where woeid='.$woeid;
 $result = getResultFromYQL($yql);
 return $result->query->results;
}
?>

How it works...
In the preceding section, we uploaded weather.php to our pages folder. The weather.php
file takes the address from the text and makes a call to yahoo's geo places service to retrieve
their WOEID, their unique weather identifier that every city has.

Combining Twilio with Other APIs

100

It then makes another YQL call to yahoo weather to return the local weather based on WOEID
and sends an SMS reply that contains today's forecast and tomorrow's forecast. These two API
calls combine to make a pretty handy weather lookup service.

Searching for local movie listings
For local movie listings, we're moving away from YQL and using Google's movie listing service.
You just text "movies" and it will return local movie listings, what time they are playing, and the
theatre where it is being screened.

There isn't actually a good API system for looking up movies, so this is kind of a hybrid lookup
system that will actually read the content of a web page and return the movie listings.

Scraping, which is what we call this type of lookup, has ups and downs. The upside is that it lets
us grab information from web sites that we normally wouldn't be able to get by any other way;
however, the downside is that, if the web site changes in any way, the lookup can be broken.

Getting ready
The complete source code for this recipe can be found in the Chapter5/ folder.

How to do it...
Who wants to go to the movies? This recipe will extend our local search system even further
with a handy movie listing.

1. Download the Simple HTML Dom library from http://simplehtmldom.
sourceforge.net/ and upload simple_html_dom.php to your web server.

2. Create a file called movies.php in the pages folder and add the following code to it:
<?php
$movies = movies($from);
print_sms_reply($movies);
function movies($location){
 require_once('simple_html_dom.php');
 $str = get_query('http://www.google.com/movies?near='
 .urlencode($location));
 $html = str_get_html($str);
 $lines = array();
 foreach($html->find('#movie_results .theater') as $div) {
 $i = 0;
 foreach($div->find('.movie') as $movie) {
 $times = remEntities(strip_tags($movie-
 >find('.times',0)->innertext));

Chapter 5

101

 $line = strip_tags($movie->find('.name a',0)-
 >innertext).' ['.$times.'] @ '.strip_tags(
 $div->find('h2 a',0)->innertext);
 $lines[$line] = $line;
 $i++;
 if($i == 10) break;
 }
 break;
 }
 $html->clear();
 return $lines;
}
?>

How it works...
The Movies.php file is nice. We take the address for the current location and it returns a list
of movies. We then use the simple_html_dom library to parse the HTML from the returned
data and display the movie name, movie time, and also what theatre it is playing at.

This method is another way to get information but it's not as handy as APIs as it can break if
someone changes the actual layout of the page we are reading.

Searching for classifieds
For the classifieds search, we're going back to Yahoo's YQL service and we'll be searching
using Craigslist. Once set up, you'll be able to type "classifieds ipad" into your phone and
it will return any local iPads that are for sale.

Getting ready...
The complete source code for this recipe can be found in the Chapter5/ folder.

How to do it...
This recipe is mostly for my wife but it's always handy to have a way to search local classifieds
sites for items you want to buy. Upload a file called classifieds.php to your web server in
the pages folder and add the following code to it:

<?php
$results = classifieds($_POST['FromCity'], $keywords);
$cnt = count($results->item);
$i = 1;
$reply = array();

Combining Twilio with Other APIs

102

foreach($results->item as $item){
 $item->title = $item->title[0];
 $item->title = str_replace(" & "," and ",$item->title);
 $msg = $item->title."\n".$item->link;
 $reply[] = $msg;
 $i++;
 if($i == 10) break;
}
print_sms_reply($reply);

function classifieds($location, $query){
 $yelpql = "USE 'https://raw.github.com/yql/yql-
 tables/master/craigslist/craigslist.search.xml' as
 craiglist.search;select * from craiglist.search where
 location='".$location."' and type="sss" and
 query='".$query."'";
 $result = getResultFromYQL($yelpql);
 return $result->query->results;
}
?>

How it works...
This script works by taking the city you are in and searching craigslist for any matches. It then
returns the name of the item as well as a link to it.

This YQL query uses another open table that's already available and performs a lookup based
on location, any type, and keyword.

Getting local TV listings
Want to know what's on TV tonight? This query will let you find out what's on for the next
60 minutes. We're going to use the API from Rovi Corp for this. You can get an API key at
http://developer.rovicorp.com/Get_Started. This isn't as much a local listing
as what's on the main TV channels right now.

Getting ready
The complete source code for this recipe can be found in the Chapter5/ folder.

Chapter 5

103

How to do it...
Let's see what's on TV right now. This recipe will extend our system to let us find out.

1. Get your Rovi Corp API Key from http://developer.rovicorp.com/Get_
Started.

2. Upload tv.php to your pages folder and add the following code to it:
<?php
$key = 'Your API Key';
$zip = $_POST['FromZip'];
$cc = $_POST['FromCountry'];

//Get the first TV service for this region:

$url = 'http://api.rovicorp.com/TVlistings/v9/listings/services/
postalcode/'.$zip.'/info?locale=en-US&countrycode='.$cc.'&apikey='
.$key.'&sig=sig';
$services = get_query($url);
$services = json_decode($services);
$services = $services->ServicesResult->Services->Service;
if(count($services)){
 $sid = $services[0]->ServiceId;
 if(!empty($sid)){
 $url= 'http://api.rovicorp.com/TVlistings/v9/listings/
linearschedule/'.$sid.'/info?locale=en-US&duration=60&inprogress=t
rue&apikey='.$key.'&sig=sig';
 $whatson = get_query($url);
 $whatson = json_decode($whatson);
echo '<pre>'.print_r($whatson,true).'</pre>';
 $whatson = $whatson->LinearScheduleResult-
 >Schedule->Airings;
 $shows = array();
 $shows[] = "TV Shows starting in the next 60
 minutes are:";
 $i = 0;
 foreach($whatson as $show){
 $shows[] = $show->Channel.' - '.$show->Title;
 $i++;
 if($i == 10) break;
 }
 print_sms_reply($shows);
 }
}else{
 print_sms_reply('No shows were found for your region.');
}

Combining Twilio with Other APIs

104

How it works...
This API lookup uses the Rovi Corp API to find out what's playing locally within the next
60 minutes on TV. You text "tv" and the system returns local TV listings. This makes it
handy to see what you want to watch on TV.

Searching Google using SMS
Want to just search the Web for something? This last recipe will let you do just that. This
recipe will let us use the "search" keyword to trigger a search in Google and return the top
three search results.

To do this, we're going to build a Custom Search Engine and also use Google's API.

Getting ready
The complete source code for this recipe can be found in the Chapter5/ folder.

How to do it...
And now, the big one. We will now add Google search to our local search system.

1. Get your Google API key from https://code.google.com/apis/console.

2. Go to http://www.google.com/cse/ and create a Custom Search Engine. We
want it to search the entire Internet, so make sure you do the following:

 � In the Sites to Search field, feel free to enter any domain; we will delete
it later

 � Head to the Setup tab under Edit search engine. In the Sites to Search
drop-down list, select Search the entire web but emphasize included sites

 � Select the domain name that you entered on the list and delete it

Now you have a Custom Search Engine that searches the entire web. Be sure to copy
the CX parameter from your URL; we will be using this later

3. Download the Google API Client for PHP from https://code.google.com/p/
google-api-php-client/.

4. Unzip the folder and upload it to your web server.

Chapter 5

105

5. Upload search.php to your pages folder and add the following code to it:
<?php
require_once 'google-api-php-client/src/Google_Client.php';
require_once 'google-api-php-client/src/contrib/Google_
CustomsearchService.php';
session_start();
$client = new Google_Client();
$client->setApplicationName('My Google SMS Search tool');
$client->setDeveloperKey('Your Developer Key Here');
$search = new Google_CustomsearchService($client);
$result = $search->cse->listCse($keywords, array(
 'cx' => 'YOUR CUSTOM SEARCH ENGINE CX HERE',
 'num'=> '3',
));
if(count($results['items'])){
 $msg = array();
 foreach($results['items'] as $item){
 $msg[] = $item['title']." ".$item['link']);
 }
 print_sms_reply($msg);
}else{
 print_sms_reply("No matches found");
}

Replace Your Developer Key Here with the developer key you got from the
Google API console, and replace YOUR CUSTOM SEARCH ENGINE CX HERE with
the CX code we told you to copy in step 2.

How it works
In step 1, we set up our Google API key. In step 2, we created our own Custom Search Engine.

In step 3, we downloaded the Google API key for PHP; in step 4, we uploaded the folder to
our web server. Step 5 saw us create our search.php file in our pages folder, which lets
us perform Google searches from our phones via SMS.

This API look up uses the Google Custom Search Engine API to search the Internet for you.
When you text "search" and a keyword, it will return the top three search results for
that keyword.

We're using Google's API Client for PHP to do the hard work for this search because it's already
set up for us. It's quick and works well.

Combining Twilio with Other APIs

106

Searching the stock market
Want to get the latest stock quotes for your favorite stock symbol? This recipe will let us use
the "stock" keyword to trigger a lookup of the latest stock quotes.

So for example, sending a text of "stock AAPL" will return the latest stock information for the
AAPL symbol.

Getting ready
The complete source code for this recipe can be found in the Chapter5/ folder.

How to do it...
This recipe will let us search Yahoo Finance for today's price quote by using the stock symbol.
Create a file called stock.php in the pages folder and add the following code to it:

<?php
 $results = stock($keywords);
 $i = 1;
 $reply = array();
 $quote = $results->quote;
 $msg = $quote->symbol.' - '.$quote->LastTradePriceOnly.' -
 '.$quote->Change.' - '.$quote->PercentChange;
 $reply[] = $msg;
 print_sms_reply($reply);

function stock($symbol){
 $yelpql = "
 USE 'http://www.datatables.org/yahoo/finance/yahoo.finance.quotes.
xml' AS yahoo.finance.quotes;select * from yahoo.finance.quotes where
symbol in ('{$symbol}')";
 $result = getResultFromYQL($yelpql);
 return $result->query->results;
}
?>

How it works...
In step 1, we created our stock.php file in our pages folder, which lets us perform the stock
quote looks via SMS. This API lookup uses the Yahoo Finance Quote tool in YQL to return
today's stock information for the symbol we sent.

Chapter 5

107

When you text "stock" and a stock symbol, you will return today's stock information. Sending
"stock AAPL" will return the following format:

AAPL - 440.51 - +21.52 - +5.14%

The preceding line is the stock symbol, last trade price, price change, and percentage change

Getting the latest headlines
Want to get the latest headlines? This recipe will let us use the "news" keyword to return the
ten latest headlines.

Getting ready
The complete source code for this recipe can be found in the Chapter5/ folder.

How to do it...
This recipe will let us search News:used, for the latest headlines from Yahoo News. Create a
file called news.php in the pages folder and add the following code to it:

<?php
 $results = news();
 $i = 1;
 $reply = array();
 foreach($results->item as $item){
 $msg = $item->title;
 $reply[] = $msg;
 }
 print_sms_reply($reply);

 function news(){
 $yelpql = 'select title from rss where
 url="http://rss.news.yahoo.com/rss/topstories" LIMIT 10';
 $result = getResultFromYQL($yelpql);
 return $result->query->results;
 }
?>

How it works...
In step 1, we created our news.php file in our pages folder, which lets us return the latest
headlines. This API look up uses the Yahoo News RSS feed via YQL to return the ten most recent
headlines. This can be handy for being up-to-date or if you just need a conversation starter.

6
Sending and Receiving

SMS Messages

In this chapter you will learn:

 f Sending a message from a website

 f Replying to a message from the phone

 f Forwarding an SMS message to another phone number

 f Sending bulk SMS messages to a list of contacts

 f Tracking orders with SMS

 f Sending group chats

 f Sending SMS messages in phone calls

 f Monitoring a website

Introduction
Being able to send SMS messages is a major part of any project that involves phone
work. I use it to send reminders, hold chats, and a variety of other tasks related to the
projects being used.

In this chapter, we'll send messages from a website, track the received messages, send
bulk messages, track orders, host a group chat, and send SMS messages when we receive
a phone call.

We're also going to build a simple website monitor that will check a group of websites every
five minutes and send you a text if the site is down. By the end of this chapter, there won't be
much that you won't be able to do with SMS and it will make for a fun experience to enhance
your web apps.

Sending and Receiving SMS Messages

110

Sending a message from a website
Sending messages from a website has many uses; sending notifications to users is one good
example. In this example, we're going to present you with a form where you can enter a phone
number and message and send it to your user. This can be quickly adapted for other uses.

Getting ready
The complete source code for this recipe can be found in the Chapter6/Recipe1/ folder.

How to do it...
Ok, let's learn how to send an SMS message from a website. The user will be prompted to fill
out a form that will send the SMS message to the phone number entered in the form.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
$accountsid = ''; // YOUR TWILIO ACCOUNT SID
$authtoken = ''; // YOUR TWILIO AUTH TOKEN
$fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
?>

4. Upload a file called sms.php and add the following code to it:
<!DOCTYPE html>
<html>
<head>
<title>Recipe 1 – Chapter 6</title>
</head>
<body>
<?php
include('Services/Twilio.php');
include("config.php");
include("functions.php");
$client = new Services_Twilio($accountsid, $authtoken);

if(isset($_POST['number']) && isset($_POST['message'])){
 $sid = send_sms($_POST['number'],$_POST['message']);
 echo "Message sent to {$_POST['number']}";

Chapter 6

111

}
?>
<form method="post">
<input type="text" name="number" placeholder="Phone Number...."
/>

<input type="text" name="message" placeholder="Message...." />

<button type="submit">Send Message</button>
</form>
</body>
</html>

5. Create a file called functions.php and add the following code to it:
<?php

function send_sms($number,$message){
 global $client,$fromNumber;
 $sms = $client->account->sms_messages->create(
 $fromNumber,
 $number,
 $message
);
 return $sms->sid;
}

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP. This library is
the heart of your Twilio-powered apps. In step 3, we uploaded config.php that contains our
authentication information to talk to Twilio's API.

In steps 4 and 5, we created sms.php and functions.php, which will send a message
to the phone number we enter. The send_sms function is handy for initiating SMS
conversations; we'll be building on this function heavily in the rest of the chapter.

Replying to a message from the phone
When a user replies to a message from his/her phone, we want to store it in the database so
that we can review the messages later.

Getting ready
The complete source code for this recipe can be found in the Chapter6/Recipe2/ folder.

Sending and Receiving SMS Messages

112

How to do it...
We're going to build a simple app that will receive SMS messages and store them in
a database. When we receive SMS messages, we will store them inside the database
along with the phone number the message came from and the unique SID.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Create a MySQL database and load the contents of sql.sql into the database.

4. Upload config.php to your website and make sure the following variables are set
as follows:
<?php
$accountsid = ''; // YOUR TWILIO ACCOUNT SID
$authtoken = ''; // YOUR TWILIO AUTH TOKEN
$fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
$dbhost = ''; // YOUR DATABASE HOST
$dbname = ''; // YOUR DATABASE NAME
$dbuser = ''; // YOUR DATABASE USER
$dbpass = ''; // YOUR DATABASE PASS
?>

5. Upload listener.php to your server using the following code:
<?php
 include("config.php");
 include("pdo.class.php");
 include("functions.php");

 $pdo = Db::singleton();

 if(isset($_POST['Body'])){
 $phone = $_POST['From'];
 $phone = str_replace('+','',$phone);
 $message = $_POST['Body'];
 $sid = $_POST['SmsSid'];
 $now = time();
 $sql = "INSERT INTO messages SET
 `message`='{$message}', `phone_number`='{$phone}',
 `sms_sid`='{$sid}',`date`='{$now}'";
 $pdo->exec($sql);
 $msg = "Your message has been recorded";
 print_sms_reply($msg);
 }
?>

Chapter 6

113

6. Create a file called functions.php and add the following code to it:
<?php
function send_sms($number,$message){
 global $client,$fromNumber;
 $sms = $client->account->sms_messages->create(
 $fromNumber,
 $number,
 $message
);
 return $sms->sid;
}

function print_sms_reply ($sms_reply){
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
 echo "<Response>\n<Sms>\n";
 echo $sms_reply;
 echo "</Sms></Response>\n";
}

7. Finally, you have to direct your Twilio phone number to it:

Insert a URL that directs to this page in the SMS Request URL box. Then, any calls
that you receive at this number will be processed via listener.php.

Sending and Receiving SMS Messages

114

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP, which is the
heart of your Twilio-powered apps. This library will be used for all communication between
your web app and Twilio.

In step 3, we loaded our database schema into our database. In step 4, we uploaded
config.php that contains our authentication information to talk to Twilio's API.

In step 5, we uploaded listener.php to our website, which records all incoming texts. In
step 6, we uploaded functions.php, which handles the functions required to send and
receive messages.

In step 7, we told our Twilio number to direct all SMS messages to listener.php. Whenever
this number receives a text, it gets stored in the messages table of our database along with
the phone number it came from and the SMS session ID. We can use this session ID to piece
together a conversation.

Forwarding SMS messages to another phone
number

This recipe can be handy when you want to forward SMS messages you received from one
phone number on your cell phone.

Getting ready
The complete source code for this recipe can be found in the Chapter6/Recipe3/ folder.

How to do it...
We're about to build a web app that will listen to incoming SMS messages and forward them
to another phone number.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
$accountsid = ''; // YOUR TWILIO ACCOUNT SID
$authtoken = ''; // YOUR TWILIO AUTH TOKEN
$fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
$toNumber = ''; // YOUR PHONE NUMBER TO FORWARD SMS TO
?>

Chapter 6

115

4. Upload forward.php to your server and add the following code to it:
<?php
 include 'Services/Twilio.php';

 include("config.php");
 include("functions.php");

 $client = new Services_Twilio($accountsid, $authtoken);

 if(isset($_POST['Body'])){
 header('Content-Type: text/html');
 $from = $_POST['From'];
 $body = $_POST['Body'];
 $msg = '['.$from.'] ' . $body;
 $msg = substr($msg, 0, 160);
 send_sms($toNumber,$msg);
 print_sms_reply($canned);
 }

5. Create a file called functions.php and add the following code to it:
<?php
function send_sms($number,$message){
 global $client,$fromNumber;
 $sms = $client->account->sms_messages->create(
 $fromNumber,
 $number,
 $message
);
 return $sms->sid;
}

function print_sms_reply ($sms_reply){
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
 echo "<Response>\n<Sms>\n";
 echo $sms_reply;
 echo "</Sms></Response>\n";
}

Sending and Receiving SMS Messages

116

6. Finally, you have to point your Twilio phone number to it:

Insert the URL that directs to this page in the SMS Request URL box . Then, any calls
that you receive at this number will be processed via forward.php.

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP, which is the
heart of your Twilio-powered apps. This library will be used for all communication between
your web app and Twilio.

In step 3, we uploaded config.php that contains our authentication information to talk to
Twilio's API. In step 4, we uploaded forward.php to our website, which takes the incoming
SMS and forwards it to the phone number we saved in the $toNumber variable. It also sends
canned messages to the sender using the $canned variable from the config.php file.

In step 5, we uploaded functions.php that handles the functions to send and receive
messages. In step 6, we told our Twilio number to direct all SMS messages to forward.php.

Now, whenever we receive an SMS message at the number selected, we forward that
message to our main phone number and also send a canned response to the sender
thanking them for the message.

Chapter 6

117

Sending bulk SMS to a list of contacts
When you have a big product launch and you want to notify your users or send out a
promotion, this is the script you would use.

Getting ready
The complete source code for this recipe can be found in the Chapter6/Recipe4/ folder.

How to do it...
We're going to build an app in this section that will let us send a message to a list of contacts.
This is handy for advertising new promotions with your business.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
$accountsid = ''; // YOUR TWILIO ACCOUNT SID
$authtoken = ''; // YOUR TWILIO AUTH TOKEN
$fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
?>

4. Upload bulk.php to your server and add the following code to it:
<?php
include('Services/Twilio.php');
include("config.php");
include("functions.php");
$client = new Services_Twilio($accountsid, $authtoken);

$people = array(
 "+14158675309" => "Curious George",
 "+14158675310" => "Boots",
 "+14158675311" => "Virgil",
);

$message = "{{name}} Try our new hot and ready pizza!";

foreach ($people as $number => $name) {
 $message = str_replace("{{name}}",$name,$message);
 $sid = send_sms($number, $message);
}

Sending and Receiving SMS Messages

118

5. Upload functions.php to your server and add the following code to it:
<?php

function send_sms($number,$message){
 global $client,$fromNumber;
 $sms = $client->account->sms_messages->create(
 $fromNumber,
 $number,
 $message
);
 return $sms->sid;
}

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP. This library is
the heart of your Twilio-powered apps. In step 3, we uploaded config.php that contains our
authentication information to talk to Twilio's API.

In step 4, we uploaded bulk.php, which handles the actual sending. In step 5, we created
functions.php, which contains the function that sends our message.

In bulk.php, we have an array for $people, which stores their phone numbers and names,
and we also have the $message variable. In this variable, we pass a tag called {{name}}.
This tag lets us replace the {{name}} tag with the person's name as it goes through the list.
This is handy for making messages more personal.

Tracking orders with SMS
We've touched on a basic order-tracking recipe in Chapter 1, Into the Frying Pan, but this one
is going to be a more advanced system. Order tracking is extremely important for any sort of
commerce, whether it be e-commerce, call-in orders, or anything that needs a good way to
give your customers a way to quickly check their orders.

Making things easy for customers keeps them coming back; having a way for your customers
to just text you an order ID and track their purchase at any time is really handy. This system
will feature an interface to manage orders, send notifications, and also handle incoming texts
asking about orders.

Getting Ready
The complete source code for this recipe can be found in the Chapter6/Recipe5 folder.

Chapter 6

119

How to do it...
We're now going to build a handy order-tracking system. We'll start with the interface to
manage orders and continue onto handling requests for order status. We'll also set up a
listener file that will accept SMS messages and reply with the status of the order.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Open sql.sql and load it to your database.

4. Upload config.php to your website and make sure the following variables are set:
<?php
$accountsid = ''; // YOUR TWILIO ACCOUNT SID
$authtoken = ''; // YOUR TWILIO AUTH TOKEN
$fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
$dbhost = ''; // YOUR DATABASE HOST
$dbname = ''; // YOUR DATABASE NAME
$dbuser = ''; // YOUR DATABASE USER
$dbpass = ''; // YOUR DATABASE PASS

$statusArray = array(
'shipped'=>'Shipped',
'fullfillment'=>'Sent to Fullfillment',
'processing'=>'Processing');
?>

5. Upload a file called orders.php to your server as follows:
<?php
 include('Services/Twilio.php');
 include("config.php");
 include("pdo.class.php");
include("functions.php");

 $client = new Services_Twilio($accountsid, $authtoken);

 $action = isset($_REQUEST['action']) ? $_REQUEST['action'] : '';
 switch($action){
 case 'update':
 $oid = $_GET['oid'];
 $status = $_GET['status'];
 $now = time();

Sending and Receiving SMS Messages

120

 $sql = "UPDATE orders SET
 `status`='{$status}',`order_date`
 ='{$now}' WHERE ID='{$oid}'";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $pdo = Db::singleton();
 $sql = "SELECT * FROM orders where `ID` =
 '{$oid}'LIMIT 1";
 $res = $pdo->query($sql);
 while($row = $res->fetch()){
 $message = "Your order has been
 set to ". $statusArray [$status];
 send_sms($row['phone_number'],$message);
 }
header("Location: orders.php");
exit;
 break;
 case 'save':
 extract($_POST);
 $now = time();
 $sql = "INSERT INTO orders SET
 order_key`='{$name}',`status`='{$status}',`
 phone_number`='{$phone_number}',`order_date`
 ='{$now}'";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 header("Location: orders.php");
exit;
 break;
 case 'addnew':
 include("form.php");
 break;
 default:
 include("home.php");
 break;
 }
?>

The Orders.php file is your order management system. It lets you enter orders,
phone numbers, and update the status. When you change the status, we send an
SMS message notifying the customer of the change.

Chapter 6

121

6. Upload a file called home.php and add the following code to it:
<!DOCTYPE html>
<html>
<head>
<title>Recipe 4 – Chapter 6</title>
</head>
<body>
Add a new order<hr />
<h2>Orders</h2>
<table width="100%">width=100%>
<tr>
 <th>Order ID</th>
 <th>Status</th>
 <th>Order Date</th>
</tr>
<?php
 $pdo = Db:singleton();
 $res = $pdo->query("SELECT * FROM orders ORDER BY
 `ID`");
 while($row = $res->fetch()){
?>
 <tr>
 <td><?=$row['order_key']?></td>
 <td><?=$statusArray[$row['status']]; ?></td>
 <td><?=date("m-d-Y ",$row['order_date'])?></td>
 <td>
<a href="orders.php?oid=<?=$row['ID']?>
&status=shipped&action=update">Mark as Shipped
<a href="orders.php?oid=<?=$row['ID']?>
&status=fullfillment&action=update">Mark as In Fullfillment
<a href="orders.php?oid=<?=$row['ID']?>
&status=processing&action=update">Mark as In Processing
 </td>
 </tr>
<?php
 }
?>
 </table>

</body>
</html>

Sending and Receiving SMS Messages

122

7. Upload a file called form.php and add the following code to it:
<!DOCTYPE html>
<html>
<head>
<title>Recipe 4 – Chapter 6</title>
</head>
<body>
<h2>Add an order</h2>
<form method="POST" action="orders.php?action=save">
<table>
<tr>
 <td>Order ID</td>
 td><input type="text" name="name" /></td>
</tr>
<tr>
 <td>Phone Number</td>
 <td><input type="text" name="phone_number" /></td>
</tr>
<tr>
 <td>Order Date</td>
 <td><input type="text" name="timestamp" placeholder="DD/MM/YY
HH:MM"/></td>
</tr>
<tr>
 <td>Order Status</td>
 <td>
 <select name="status">
<?php
foreach($statusArray as $k=>$v){
 echo '<option value="'.$k.'">'.$v.'</option>';
}
?>
 </select>
 </td>
</tr>
</table>
<button type="submit">Save</button>
</form>
</body>
</html>

Chapter 6

123

8. Upload a file called tracking.php to your server:
 <?php
 include("config.php");
 include("pdo.class.php");
 include("functions.php");

 if(isset($_POST['Body'])){
 $phone = $_POST['From'];
 $order_id = strtolower($_POST['Body']);
 $status = order_lookup($order_id);
 print_sms_reply("Your order is currently set at
 status '".$status."'");
 }else{
 print_sms_reply("Please send us your order id
 and we will look it up ASAP");
 }

9. Upload a file called functions.php and add the following code to it:
<?php

 function send_sms($number,$message){
 global $client,$fromNumber;
 $sms = $client->account->sms_messages->create(
 $fromNumber,
 $number,
 $message
);
 return $sms->sid;
 }

 function print_sms_reply ($sms_reply){
 echo "<?xml version=\"1.0\" encoding=\"UTF-
 8\"?>\n";
 echo "<Response>\n<Sms>\n";
 echo $sms_reply;
 echo "</Sms></Response>\n";
 }

 function order_lookup($order_id){
 global $statusArray;
 $pdo = Db::singleton();

Sending and Receiving SMS Messages

124

 $sql = "SELECT * FROM orders where `ID` =
 '{$order_id}' OR `order_key` =
 '{$order_id}' LIMIT 1";
 $res = $pdo->query($sql);
 while($row = $res->fetch()){
 return $statusArray[$row['status']];
 }
 return 'No Order Matching that ID was found';
 }
?>

10. To have a number point to this script, log in to your Twilio account and point your
Twilio phone number to it:

Insert the URL for this page in the SMS Request URL box. Then, any text messages
that you receive at this number will be processed via tracking.php.

Chapter 6

125

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP. This library
is the heart of your Twilio-powered apps. In step 3, we loaded our database schema into
our database.

In step 4, we uploaded config.php that contains our authentication information to talk to
Twilio's API. In steps 5, 6, and 7, we created our order tracking system. In step 8, we uploaded
tracking.php that takes all incoming texts.

In step 9, we uploaded functions.php that handles our functions that send and
receive texts. Finally, in step 10, we told our Twilio number to direct all SMS messages
to tracking.php.

This recipe has two parts. The first part lets us track our orders and send notifications to
customers. The second part replies with a text message whenever the customers sends
us a text containing their order ID.

Sending and receiving group chats
Being able to hold a conversation with a group is cool and fun and can be useful for events.
This recipe will let you store all conversations for a group in the database and send replies to
each member.

Getting ready
The complete source code for this recipe can be found in the Chapter6/Recipe6/ folder.

How to do it...
We're going to build a simple app that will send and receive messages to and from a group of
people. This app will forward any message received at the designated phone number of the
people on the group list and send any messages you choose as well.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

Sending and Receiving SMS Messages

126

3. Upload config.php to your website and make sure the following variables are set
as follows:
<?php
session_start();
$accountsid = ''; // YOUR TWILIO ACCOUNT SID
$authtoken = ''; // YOUR TWILIO AUTH TOKEN
$fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM

$people = array(
 "+14158675309" => "Curious George",
 "+14158675310" => "Boots",
 "+14158675311" => "Virgil",
);
?>

4. Upload a file called functions.php and add the following code to it:
<?php
function send_sms($number,$message){
 global $client,$fromNumber;
 $sms = $client->account->sms_messages->create(
 $fromNumber,
 $number,
 $message
);
 return $sms->sid;
}
function print_sms_reply ($sms_reply){
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
 echo "<Response>\n<Sms>\n";
 echo $sms_reply;
 echo "</Sms></Response>\n";
}

5. Upload a file called sms.php to your server as follows:
<!DOCTYPE html>
<html>
<head>
<title>Recipe 5 – Chapter 6</title>
</head>
<body>
<?php
include('Services/Twilio.php');

Chapter 6

127

include("config.php");
$client = new Services_Twilio($accountsid, $authtoken);
include("functions.php");

if(isset($_POST['message'])){
 foreach ($people as $number => $name) {
 $sid = send_sms($number,$_POST['message']);
 }
}
?>
<form method="post">
<input type="text" name="message" placeholder="Message...." />

<button type="submit">Send Message</button>
</form>
</body>
</html>

6. Upload a file called listener.php to your server:
<?php
include("config.php");
$client = new Services_Twilio($accountsid, $authtoken);
include("functions.php");

if(isset($_POST['Body'])){
 $sid = $_POST['SmsSid'];
 $phone = $_POST['From'];
 $phone = str_replace('+','',$phone);
 $message = strtolower($_POST['Body']);
 $name = $people[$phone];
 if(empty($name)) $name = $phone;
 $message = '['.$name.'] '.$message;
 foreach ($people as $number => $name) {
 if($number == $phone) continue;
 $sid = send_sms($number,$message);
 }
 print_sms_reply("Message delivered");
}
?>

Sending and Receiving SMS Messages

128

7. Finally, we have to point your Twilio phone number to it:

Insert the URL for this page in the SMS Request URL box. Then, any calls that you
receive at this number will be processed via listener.php.

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP; this library is
the heart of your Twilio-powered apps. In step 3, we uploaded config.php that contains our
authentication information to talk to Twilio's API.

In step 4, we set up the initial file to send messages. In step 5, we uploaded sms.php to the
server. Step 6 saw us create the listener and finally step 7 saw us point our Twilio number to
listener.php.

The group is stored in config.php. When we send a message either from sms.php or as a
reply, it forwards the message to all members of the group.

Chapter 6

129

Sending SMS messages in a phone call
We've handled all other sorts of SMS messages, but what about sending an SMS during a
phone call? This recipe will send an SMS message to anyone who calls our phone number.

Getting ready
The complete source code for this recipe can be found in the Chapter6/Recipe7/ folder.

How to do it...
This recipe will show you how to build a simple app that will send an SMS to the person who
called your phone number.

1. Upload sms.php to your server as follows:
<?php
 $people = array(
 "+14158675309"=>"Curious George",
 "+14158675310"=>"Boots",
 "+14158675311"=>"Virgil"
);
 if(!$name = $people[$_REQUEST['From']]) {
 $name = "Monkey";
 }
 header("content-type: text/xml");
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
?>
<Response>
 <Say>Hello <?php echo $name ?>.</Say>
 <Sms><?php echo $name ?>, thanks for the call!</Sms>
</Response>

Sending and Receiving SMS Messages

130

2. Finally, you have to point your Twilio phone number to it:

Insert the URL for this page in the SMS Request URL box. Then, any calls that you
receive at this number will be processed via sms.php.

How it works...
In step 1, we created sms.php. In step 2, we pointed our Twilio phone number to sms.php.

Now, whenever we receive a call, it will check to see if it already knows the caller from
their phone number; if so, it will send them a message by name. Otherwise, it will call
them Monkey and send them a generic SMS message.

Monitoring a website
I own nearly twenty websites; if those sites go down, my clients get mad. This recipe is a handy
recipe to monitor a list of websites every five minutes and, if the site is unreachable, send out
a text message.

Chapter 6

131

We're going to use a simple key-value pair datastore system that will store the URL and
the current status of the site in a file. If the site is down, we will send a notification to a
list of users. Then, if the site is back up the next time the script runs, we will send another
notification to the users to tell them that the site is up.

Getting ready
The complete source code for this recipe can be found in the Chapter6/Recipe8/ folder.

How to do it...
This recipe will build a simple website monitor that we will set up to check a list of sites every
five minutes.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your website and make sure the following variables are set:
<?php
session_start();
$accountsid = ''; // YOUR TWILIO ACCOUNT SID
$authtoken = ''; // YOUR TWILIO AUTH TOKEN
$fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM

$people = array(
 "+14158675309" => "Curious George",
 "+14158675310" => "Boots",
 "+14158675311" => "Virgil",
);

$sites = array(
 "http://google.com"=> "Google",
 "http://yahoo.com"=>"Yahoo",
 "http://starbucks.com"=>"Star Bucks"
);
?>

4. Upload datastore.class.php to your web server.

5. Upload a file called functions.php and add the following code to it:
<?php
function check_site($url){
 if(!filter_var($url, FILTER_VALIDATE_URL)){
 return false;

Sending and Receiving SMS Messages

132

}
$cl = curl_init($url);
curl_setopt($cl,CURLOPT_CONNECTTIMEOUT,10);
curl_setopt($cl,CURLOPT_HEADER,true);
curl_setopt($cl,CURLOPT_NOBODY,true);
curl_setopt($cl,CURLOPT_RETURNTRANSFER,true);
$response = curl_exec($cl);
curl_close($cl);
if ($response) return true;
return false;
}

function send_sms($number,$message){
 global $client,$fromNumber;
 $sms = $client->account->sms_messages->create(
 $fromNumber,
 $number,
 $message
);
 return $sms->sid;
}

6. Upload a file called check.php to your server as follows:
<?php
include('Services/Twilio.php');
include("config.php");
include("datastore.class.php");
include("functions.php");

$client = new Services_Twilio($accountsid, $authtoken);
$datastore = new DataStore('check_sites');

foreach($sites as $url=>$name){
 if(!check_site($url)){
 $datastore->Set($url,'down',0);
 $message = "Oops! The site found at {$url} seems
 to be down!";
 foreach($people as $number=>$person){
 send_sms($number,$message);
 }
 }else{
 $last = $datastore->Get($url);
 if($last == 'down'){

Chapter 6

133

 $message = "Yay! The site found at {$url}
 seems to be back up!";
 foreach($people as $number=>$person){
 send_sms($number,$message);
 }
 }
 $datastore->Set($url,'up',0);
 }
}

7. Now, let's set up a cron job to run every five minutes.
*/5 * * * * /usr/bin/curl -I "http://www.mywebsite.com/check.php"

How it works...
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP. This library
is the heart of your Twilio-powered apps and lets us talk to Twilio. In step 3, we uploaded
config.php that contains our authentication information to talk to Twilio's API.

In step 4, we uploaded datastore.class.php, which is a simple key/pair datastore that
lets us store a URL and the status of the site. In step 5, we uploaded functions.php, which
handles checking the status of websites and sending messages when sites are down.

In step 6, we uploaded check.php, which loops through our list of sites and sends a
notification if a site is down. In step 7, we set up a cron job to check this every five minutes.

Now, if check.php is run and a site is down, it notifies the people on the contact list. When it
runs again and finds that the site is reachable but was down the last time it ran, we notify the
people on the contact list again.

We're using a simple file-based datastore system for this one as a full database isn't
necessary. The datastore class will create a folder called _cache and will store each file as
an MD5 hash with the extension of .store . So, if a site was called http://google.com,
the datastore file would be c7b920f57e553df2bb68272f61570210.store.

7
Building a Reminder

System

In this chapter you will learn the following:

 f Scheduling reminders via text messages

 f Getting notified when the time comes

 f Retrieving a list of upcoming reminders

 f Cancelling an upcoming reminder

 f Adding another person to a reminder

Introduction
Being able to set reminders is a handy feature. I find myself setting reminders for just about
everything, and this tool has served me well for a couple of years now.

When we're finished, we're going to have a nice reminder system that can be commanded
using simple text messages:

 f Change tires – 11/11/13 @ 11a.m.: This will set a reminder to get my tires
changed on November 11 at 11 a.m.

 f showme: This will list all pending reminders.

 f change tires – cancel: This will cancel the tire change reminder.

 f change tires – add 2501121212: This will add another person to my reminder.

This reminder system is simple, handy, and nice to keep around.

Building a Reminder System

136

Scheduling reminders via text
This reminder system will let us send a text and get a reminder an hour before it's scheduled.

First, we have to set up the code to actually receive reminders.

Getting ready
The complete source code for this recipe can be found in the Chapter7/Recipe1 folder

How to do it…
To start with, we're going to build a method to schedule reminders via text messages. We'll
build a web app that will let us send a message with a time and save the reminder for later.

1. Download Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload sql.sql to your database.

4. Upload config.php to your website and make sure the following variables are set:
<?php
 session_start();
 $accountsid = ''; //YOUR TWILIO ACCOUNT SID
 $authtoken = ''; //YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM

 $dbhost = ''; //YOUR DATABASE HOST
 $dbname = ''; //YOUR DATABASE NAME
 $dbuser = ''; //YOUR DATABASE USER
 $dbpass = ''; //YOUR DATABASE PASS
?>

5. Upload a file called listener.php using the following code:
<?php
include('Services/Twilio.php');
include("config.php");
include("functions.php");

if(isset($_POST['Body'])){
 $phone = $_POST['From'];
 $body = $_POST['Body'];
 $body = strtolower($body);

Chapter 7

137

 $keywords = explode(" ",$body);
 $key = $keywords[0];
 unset($keywords[0]);
 $keywords = implode(" ",$keywords);
 $key = strtolower($key);
 $timestamp = strtotime($action);
//actions
 if($key == 'showme'){
 }else{
 $reminder = explode(' - ',$body);
 $msg = $reminder[0];
 $action = $reminder[1];
 $actions = explode(" ",$action);
 if($actions[0] == 'cancel'){
 }else if($actions[0] == 'add'){
 }else{
 //new reminder
 $timestamp = strtotime($action);
 $sql = "INSERT INTO reminders SET
 `message`='{$msg}',`timestamp`='{$timestamp}',
 `phone_number`='{$phone}'";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $qid = $pdo->lastInsertId();
 print_sms_reply("Your reminder has been set.");
 }
 }
// end actions
}

6. Upload a file called functions.php:
<?php
function print_sms_reply ($sms_reply){($sms_reply){
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
 echo "<Response>\n";
 if(!is_array($sms_reply)){
 echo '<Sms>'.$sms_reply.'</Sms>';
 }else{
 $cnt = count($sms_reply);
 $i = 1;
 foreach($sms_reply as $line){
 $line = $line." (".$i."/".$cnt.")";
 echo '<Sms>'.$line.'</Sms>';
 $i++;

Building a Reminder System

138

 }
 }
 echo "</Response>\n";
}

7. Finally, you have to point your Twilio phone number to it.

8. Insert http://mysite.com/listener.php to this page in the SMS Request
URL field. Then, any calls that you receive at this number will be processed via
listener.php.

How it works…
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP; this library is
at the heart of your Twilio-powered apps.

In step 3, we loaded our database schema into our database.

In step 4, we uploaded config.php that contains our authentication information to
communicate with Twilio's API.

In step 5, we uploaded listener.php that records all incoming texts.

Chapter 7

139

In step 6, we uploaded functions.php that handles any functions we'll use.

In step 7, we informed our Twilio number to direct all SMS messages to listener.php.

Now, when we receive a text, we store it as a reminder with the message, timestamp, and the
phone number to send it.

Getting notified when the time comes
Ok, we're done adding reminders; now, how do we get reminded? Simple, a cron job that runs
each hour and notifies us of upcoming reminders an hour before they are due.

Getting ready
The complete source code for this recipe can be found in the Chapter7/Recipe2 folder.

How to do it…
Now we're building the part of our reminder system that notifies us when the time comes for
the reminder.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload sql.sql to your database.

4. Upload config.php to your website and make sure the following variables are set:
<?php
 session_start();
 $accountsid = '';//YOUR TWILIO ACCOUNT SID
 $authtoken = '';//YOUR TWILIO AUTH TOKEN
 $fromNumber = '';//PHONE NUMBER CALLS WILL COME FROM

 $dbhost = '';//YOUR DATABASE HOST
 $dbname = '';//YOUR DATABASE NAME
 $dbuser = '';//YOUR DATABASE USER
 $dbpass = '';//YOUR DATABASE PASS
?>

5. Upload cron.php to your web server using the following code:
<?php
include("config.php");
include("pdo.class.php");

Building a Reminder System

140

include 'Services/Twilio.php';

$pdo = Db::singleton();
$client = new Services_Twilio($accountsid, $authtoken);

$curtime = strtotime("+1 hour");
$curtime2 = strtotime("+2 hour");
$sql = "SELECT * FROM reminders where (`timestamp` BETWEEN
 $curtime AND $curtime2) AND `notified` = 0";

$res = $pdo->query($sql);
while($row = $res->fetch()){
 $msg = "Reminder: ".$row['message']. ' @ '.date('h:i
 A',$row['timestamp']);;
 $pdo->exec("UPDATE reminders SET `notified` =
 1,`status`=1 WHERE `ID`='{$row['ID']}';");
 $ph = $row['phone_number'];
 $ph2 = $row['phone_number2'];
 $client->account->sms_messages->create($fromNumber, $ph, $msg
);
 if(!empty($ph2)){
 $client->account->sms_messages->create($fromNumber, $ph2,
$msg);
 }
}

6. Set cron.php to run on an hourly cron as follows:
0 * * * * /usr/bin/curl -I
 "http://www.mywebsite.com/cron.php"

How it works…
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP; this library is
at the heart of your Twilio-powered apps.

In step 3, we loaded our database schema into our database.

In step 4, we uploaded config.php that contains our authentication information to
communicate with Twilio's API.

In step 5, we uploaded cron.php, and in step 6, we set it up to run hourly.

First, we populate the $curtime variable with whatever the time will be one hour from the
present. Then we grab all the reminders that are due for that time and send a text message
about it.

Chapter 7

141

Retrieving a list of upcoming reminders
Now we will learn how to retrieve a list of upcoming reminders. This will work by sending a text
with the message showme; it will send us a list of pending reminders based on phone number.

We're going to build on the first listener.php file by changing the code inside the
//actions and //end actions blocks.

Getting ready
The complete source code for this recipe can be found in the Chapter7/Recipe3 folder.

How to do it…
This recipe will extend listener.php to allow us to also return a list of upcoming reminders:

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload sql.sql to your database.

4. Upload config.php to your website and make sure the following variables are set:
<?php
 session_start();
 $accountsid = '';//YOUR TWILIO ACCOUNT SID
 $authtoken = '';//YOUR TWILIO AUTH TOKEN
 $fromNumber = '';//PHONE NUMBER CALLS WILL COME FROM

 $dbhost = '';//YOUR DATABASE HOST
 $dbname = '';//YOUR DATABASE NAME
 $dbuser = '';//YOUR DATABASE USER
 $dbpass = '';//YOUR DATABASE PASS
?>

5. Create listener.php as follows:
<?php
include('Services/Twilio.php');
include("config.php");
include("functions.php");

if(isset($_POST['Body'])){
 $phone = $_POST['From'];
 $body = $_POST['Body'];

Building a Reminder System

142

 $from = $_POST['FromCity'].', '.$_POST['FromState'];
 $body = strtolower($body);
 $keywords = explode(" ",$body);
 $key = $keywords[0];
 unset($keywords[0]);
 $keywords = implode(" ",$keywords);
 $key = strtolower($key);
//actions
 if($key == 'showme'){
 $lines = array();
 $curtime = strtotime("+1 hour");
 $sql = "SELECT * FROM reminders where `timestamp` >
 $curtime AND notified = 0";
 $res = $pdo->query($sql);
 while($row = $res->fetch()){
 $lines[] = $row['message'].' - '.date('d/m/Y @ h:i
 A',$row['timestamp']);
 }
 print_sms_reply ($lines);
 }else{
 $reminder = explode(' - ',$body);
 $msg = $reminder[0];
 $action = $reminder[1];
 $actions = explode(" ",$action);
 if($actions[0] == 'cancel'){
 }else if($actions[0] == 'add'){
 }else{
 //new reminder
 $timestamp = strtotime($action);
 $sql = "INSERT INTO reminders SET
 `message`='{$msg}',`timestamp`='{$timestamp}',`
 phone_number`='{$phone}'";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $qid = $pdo->lastInsertId();
 print_sms_reply("Your reminder has been set.");
 }
 }
//end actions
}

Chapter 7

143

6. Upload a file called functions.php using the following code:
<?php
function print_sms_reply ($sms_reply){($sms_reply){
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
 echo "<Response>\n";
 if(!is_array($sms_reply)){
 echo '<Sms>'.$sms_reply.'</Sms>';
 }else{
 $cnt = count($sms_reply);
 $i = 1;
 foreach($sms_reply as $line){
 $line = $line." (".$i."/".$cnt.")";
 echo '<Sms>'.$line.'</Sms>';
 $i++;
 }
 }
 echo "</Response>\n";
}

7. Finally, we have to point your Twilio phone number to it.

Insert the URL in the SMS Request URL field. Then, any calls that you receive at this number
will be processed via listener.php.

Building a Reminder System

144

How it works…
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP; this library is
at the heart of your Twilio-powered apps.

In step 3, we loaded our database schema into our database.

In step 4, we uploaded config.php that contains our authentication information to
communicate with Twilio's API.

In steps 5 and 6, we uploaded listener.php and functions.php, which records all
incoming texts.

In step 7, we told our Twilio number to direct all SMS messages to listener.php.

When we receive a text, we check it; if it contains the keyword showme, we return a list of
pending reminders. Otherwise, we add a new reminder to the database.

Canceling an upcoming reminder
Reminders change and sometimes you have to cancel them ahead of time. This recipe will
enable the system to handle that.

Getting ready
The complete source code for this recipe can be found in the Chapter7/Recipe4 folder.

How to do it…
Ok, now we're going to build support for deleting reminders.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload sql.sql to your database

4. Upload config.php to your website and make sure the following variables are set:
<?php
 session_start();
 $accountsid = '';//YOUR TWILIO ACCOUNT SID

Chapter 7

145

 $authtoken = '';//YOUR TWILIO AUTH TOKEN
 $fromNumber = '';//PHONE NUMBER CALLS WILL COME FROM

 $dbhost = '';//YOUR DATABASE HOST
 $dbname = '';//YOUR DATABASE NAME
 $dbuser = '';//YOUR DATABASE USER
 $dbpass = '';//YOUR DATABASE PASS
?>

5. Upload a file called listener.php with the help of the following code:
<?php
include('Services/Twilio.php');
include("config.php");
include("functions.php");

if(isset($_POST['Body'])){
 $phone = $_POST['From'];
 $body = $_POST['Body'];
 $from = $_POST['FromCity'].', '.$_POST['FromState'];
 $body = strtolower($body);
 $keywords = explode(" ",$body);
 $key = $keywords[0];
 unset($keywords[0]);
 $keywords = implode(" ",$keywords);
 $key = strtolower($key);
//actions
 if($key == 'showme'){
 $lines = array();
 $curtime = strtotime("+1 hour");
 $sql = "SELECT * FROM reminders where `timestamp` > $curtime
 AND notified = 0";
 $res = $pdo->query($sql);
 while($row = $res->fetch()){
 $lines[] = $row['message'].' - '.date('d/m/Y @ h:i
 A',$row['timestamp']);
 }
 print_sms_reply ($lines);
 }else{
 $reminder = explode(' - ',$body);
 $msg = $reminder[0];

Building a Reminder System

146

 $action = $reminder[1];
 $actions = explode(" ",$action);
 if($actions[0] == 'cancel'){
 $pdo = Db::singleton();
 $pdo->exec("DELETE reminders WHERE `message`='{$msg}'
 AND `phone_number`='{$phone}';");
 print_sms_reply("Your reminder has been cancelled.");
 }else if($actions[0] == 'add'){
 }else{
 //new reminder
 $timestamp = strtotime($action);
 $sql = "INSERT INTO reminders SET `message`='{$msg}',`timest
amp`='{$timestamp}',`phone_number`='{$phone
 }'";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $qid = $pdo->lastInsertId();
 print_sms_reply("Your reminder has been set.");
 }
 }
//end actions
}

6. Upload a file called functions.php with the following code:
<?php
function print_sms_reply ($sms_reply){($sms_reply){
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
 echo "<Response>\n";
 if(!is_array($sms_reply)){
 echo '<Sms>'.$sms_reply.'</Sms>';
 }else{
 $cnt = count($sms_reply);
 $i = 1;
 foreach($sms_reply as $line){
 $line = $line." (".$i."/".$cnt.")";
 echo '<Sms>'.$line.'</Sms>';
 $i++;
 }
 }
 echo "</Response>\n";
}

Chapter 7

147

7. Finally, you have to point your Twilio phone number to it.

Insert http://mysite.com/listener.php in the SMS Request URL field. Then, any calls
that you receive at this number will be processed via listener.php.

How it works…
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP; this library is
at the heart of your Twilio-powered apps.

In step 3, we loaded our database schema into our database.

In step 4, we uploaded config.php that contains our authentication information to
communicate with Twilio's API.

In steps 5 and 6, we uploaded listener.php and functions.php, which records all
incoming texts.

In step 7, we told our Twilio number to direct all SMS messages to listener.php.

When we receive a text, we check it; if it contains the keyword showme, we return a list of
pending reminders.

Building a Reminder System

148

Then we check to see if the cancel keyword was sent with the reminder.

So change tires – cancel would check for a pending reminder with my phone number
and the message of "change tires" and delete it.

Adding another person to a reminder
I first had to add this functionality when adding my wife to reminders. It's worked well for me
since, so here it is.

Getting ready
The complete source code for this recipe can be found in the Chapter7/Recipe5 folder.

How to do it…
Let's add another person to our reminders. We're going to add the ability to add a second
phone number to a reminder and have them get notified when you get notified.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload sql.sql to your database

4. Upload config.php to your website and make sure the following variables are set:
<?php
session_start();
$accountsid = '';//YOUR TWILIO ACCOUNT SID
 $authtoken = '';//YOUR TWILIO AUTH TOKEN
 $fromNumber = '';//PHONE NUMBER CALLS WILL COME FROM

 $dbhost = '';//YOUR DATABASE HOST
 $dbname = '';//YOUR DATABASE NAME
 $dbuser = '';//YOUR DATABASE USER
 $dbpass = '';//YOUR DATABASE PASS
?>

Chapter 7

149

5. Upload a file called listener.php using the following code:
<?php
include('Services/Twilio.php');
include("config.php");
include("functions.php");

if(isset($_POST['Body'])){
 $phone = $_POST['From'];
 $body = $_POST['Body'];
 $from = $_POST['FromCity'].', '.$_POST['FromState'];
 $body = strtolower($body);
 $keywords = explode(" ",$body);
 $key = $keywords[0];
 unset($keywords[0]);
 $keywords = implode(" ",$keywords);
 $key = strtolower($key);
//actions
 if($key == 'showme'){
 $lines = array();
 $curtime = strtotime("+1 hour");
 $sql = "SELECT * FROM reminders where `timestamp` > $curtime
 AND notified = 0";
 $res = $pdo->query($sql);
 while($row = $res->fetch()){
 $lines[] = $row['message'].' - '.date('d/m/Y @ h:i
 A',$row['timestamp']);
 }
 print_sms_reply ($lines);
 }else{
 $reminder = explode(' - ',$body);
 $msg = $reminder[0];
 $action = $reminder[1];
 $actions = explode(" ",$action);
 if($actions[0] == 'cancel'){
 $pdo = Db::singleton();
 $pdo->exec("DELETE reminders WHERE `message`='{$msg}'
 AND `phone_number`='{$phone}';");
 print_sms_reply("Your reminder has been cancelled.");
 }else if($actions[0] == 'add'){
 //second phone number from $actions[1]
 $pdo = Db::singleton();

Building a Reminder System

150

 $pdo->exec("UPDATE reminders SET
 `phone_number2`='{$actions[1]}' WHERE `message`='{$msg}'
 AND `phone_number`='{$phone}';");
 print_sms_reply("Your reminder has been updated.");
 }else{
 //new reminder
 $timestamp = strtotime($action);
 $sql = "INSERT INTO reminders SET
 `message`='{$msg}',`timestamp`='{$timestamp}',`phone_
number`=
 '{$phone}'";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $qid = $pdo->lastInsertId();
 print_sms_reply("Your reminder has been set.");
 }
 }
//end actions
}

6. Upload a file called functions.php in accordance with the following code:
<?php
function print_sms_reply ($sms_reply){($sms_reply){
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
 echo "<Response>\n";
 if(!is_array($sms_reply)){
 echo '<Sms>'.$sms_reply.'</Sms>';
 }else{
 $cnt = count($sms_reply);
 $i = 1;
 foreach($sms_reply as $line){
 $line = $line." (".$i."/".$cnt.")";
 echo '<Sms>'.$line.'</Sms>';
 $i++;
 }
 }
 echo "</Response>\n";
}

Chapter 7

151

7. Finally, you have to point your Twilio phone number to it.

8. Insert http://mysite.com/listener.php to this page in the SMS Request
URL field. Then, any calls that you receive at this number will be processed via
listener.php.

How it works…
In steps 1 and 2, we downloaded and installed the Twilio Helper Library for PHP; this library is
at the heart of your Twilio-powered apps.

In step 3, we loaded our database schema into our database.

In step 4, we uploaded config.php, which contains our authentication information to
communicate with Twilio's API.

In steps 5 and 6, we uploaded listener.php and functions.php, which records all
incoming texts.

In step 7, we told our Twilio number to direct all SMS messages to listener.php.

When we receive a text, we check it; if it contains the keyword showme, we return a list of
pending reminders.

Building a Reminder System

152

Then we check to see if the cancel keyword was sent with the reminder.

So change tires – cancel would check for a pending reminder with my phone number
and the message of change tires and delete it.

Our final action is to check if we are adding a second phone number to the reminder. If we
pass the reminder with add 1112223344, we would add the phone number to the reminder.

So change tires – cancel would check for a pending reminder with my phone number
and the message of change tires and delete it.

8
Building an IVR System

In this chapter, you will learn the following recipes:

 f Setting up IVRs

 f Screening and recording calls

 f Logging and reporting calls

 f Looking up HighriseHQ contacts on incoming calls

 f Getting directions

 f Leaving a message

 f Sending an SMS to your Salesforce.com contacts

Introduction
IVRs, Interactive Voice Response systems, are automated phone systems that can facilitate
communication between callers and businesses. If you have ever been able to get through to
your bank to check balance after responding to a series of automated prompts, you have used
an IVR.

Businesses use IVR systems for a number of purposes, such as:

 f Answering a call and prompting menu options for the caller to choose

 f Directing the call to an agent, such as sales or support

 f Acting as a voicemail or an answering machine

Building an IVR System

154

Taking it a step further, IVR systems are heavily in use for services such as:

 f Mobile: Pay-as-you-go account funding; registration; and mobile purchases such as
ringtones and logos

 f Banking: balance, payments, transfers, transaction history, and so on

 f Retail and Entertainment: orders, bookings, credit and debit card payments

 f Utilities: meter readings

 f Travel: ticket booking, flight information, checking in, and so on

 f Weather forecasts: water, road, and ice conditions

Using PHP and the Twilio API, you can easily create a powerful IVR for your business.

In this chapter, we will set up a basic IVR system, perform call screening and recording,
log and report the calls, and also check our incoming calls to see whether they exist in our
Highrise CRM account.

We'll also show you how to add extra options on to your IVR menu by adding the ability to get
directions to the office.

Finally, we will set up a system to get a list of contacts from our www.Salesforce.com
account and send an SMS to them.

Setting up IVRs
In this first section, we will set up our basic IVR with a simple phone tree.

When a caller calls in, we'll give them a list of options. Pressing 1 will give them the store
hours, and pressing 2 will prompt them to enter the extension of an agent.

Getting ready
The complete source code for this recipe can be found in the Chapter8/Recipe1/ folder

How to do it…
Let's set up the basic IVR system. The basic system will consist of a simple company directory,
which would display the incoming calls.

When a user calls in, it will greet them and then prompt them to make a choice.

1. Upload config.php on your website and make sure your phone tree variables are set:
<?php
 $directory = array(

Chapter 8

155

 '1'=> array(
 'phone'=>'415-555-2222',
 'firstname' => 'Joe',
 'lastname' => 'Doe'
),
 '2'=> array(
 'phone'=>'415-555-3333',
 'firstname' => 'Eric',
 'lastname' => 'Anderson'
),
 '3'=> array(
 'phone'=>'415-555-4444',
 'firstname' => 'John',
 'lastname' => 'Easton'
),
);

2. Upload a file called listener.php:
<?php
 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
?>
<Response>
 <Gather action="input.php" numDigits="1">
 <Say>Welcome to my pretend company.</Say>
 <Say>For store hours, press 1.</Say>
 <Say>To speak to an agent, press 2.</Say>
 </Gather>
 <!-- If customer doesn't input anything, prompt and try
 again. -->
 <Say>Sorry, I didn't get your response.</Say>
 <Redirect>listener.php</Redirect>
</Response>

Listener is the first responder; it's called when a caller first calls our phone number,
and from there we send the caller to the next file.

Listener.php contains our initial menu options, and it prompts the caller to make
a decision.

3. Now, create a file called input.php as follows:
<?php
 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
 echo '<Response>';

Building an IVR System

156

 $user_pushed = (int) $_REQUEST['Digits'];
 switch($user_pushed){
 case 1:
 echo '<Say>Our store hours are 8 AM to 8 PM
 everyday.</Say>';
 break;
 case 2:
 echo '<Gather action="extensions.php"
 numDigits="1">';
 echo "<Say>Please enter your party's
 extension.</Say>";
 echo '<Say>Press 0 to return to the main menu</Say>';
 echo '</Gather>';
 echo "<Say>Sorry, I didn't get your response.</Say>";
 echo '<Redirect method="GET">input.php?Digits=2
 </Redirect>';
 break;
 default:
 echo "<Say>Sorry, I can't do that yet.</Say>";
 echo '<Redirect>listener.php</Redirect>';
 break;
 }
 echo '</Response>';
?>

4. The last file to be created is extensions.php as follows:
<?php
 include("config.php");
 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
 echo '<Response>';
 $user_pushed = (int) $_REQUEST['Digits'];
 switch($user_pushed){
 case 0:
 echo '<Say>Taking you back to the main menu</Say>';
 echo '<Redirect>listener.php</Redirect>';
 break;
 default:
 if(isset($directory[$user_pushed])){
 $agent = $directory[$user_pushed];
 echo '<Say>Connecting you to '.$agent['firstname'].'.</
Say>';
 echo '<Dial>'.$agent['phone'].'</Dial>';
 }else{

Chapter 8

157

 echo "<Say>Sorry, that extension is unknown.
 </Say>";
 echo '<Redirect method="GET">input.php?Digits=2
 </Redirect>';
 }
 break;
 }
 echo '</Response>';
?>

5. Finally, you have to point your Twilio phone number to the extensions.php file:

Insert the URL to this page in the Voice Request URL field. Then, any calls that you
receive at this number will be processed via listener.php.

How it works…
In step 1, we uploaded config.php that contains our company directory.

In steps 2, 3, and 4, we set up listener.php, input.php, and extensions.php that
take the incoming calls, and accept an input from the caller to either return the call during
business hours or connect them to an agent.

Building an IVR System

158

Finally, we used step 5 to add listener.php to a phone number, which means any incoming
calls to that phone number go through listener.php.

Once a caller calls in, they will be greeted and then prompted to either hit 1 or 2. If they
choose 1, we'll give them the store hours and if they hit 2, we'll ask them to enter an
extension for an agent to call.

If they press an extension, we then check to see if there is a match and if so, we direct a call
to them.

Screening and recording calls
Ok, we've set up a basic IVR. Now let's expand it a little and include the ability for our agents
to accept a call or not.

We'll also set it up to record calls, which is standard for most IVR systems.

When calls come in, the agent will be prompted to press 1 to accept the call or, otherwise, any
other number to disconnect the call.

Getting ready
The complete source code for this recipe can be found in the Chapter8/Recipe2/ folder.

How to do it…
This recipe will let us screen and record the calls we take. When a call is connected to an
agent, they will receive a prompt whether they want to accept the call or not. If they want to
accept it, they will hit 1 and the call will be connected. Pressing any other key will reject the
call and hang it up.

1. First, update extensions.php as follows:
<?php
 include("config.php");
 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
 echo '<Response>';
 $user_pushed = (int) $_REQUEST['Digits'];
 switch($user_pushed){
 case 0:
 echo '<Say>Taking you back to the main menu</Say>';
 echo '<Redirect>listener.php</Redirect>';
 break;
 default:

Chapter 8

159

 if(isset($directory[$user_pushed])){
 $agent = $directory[$user_pushed];
 echo '<Say>Connecting you to '.$agent['firstname']
 .'. All calls are recorded.</Say>';
 echo '<Dial record="true">';
 echo '<Number url="screen-caller.xml">'
 .$agent['phone'].'</Number>';
 echo '</Dial>';
 }else{
 echo "<Say>Sorry, that extension is unknown.
 </Say>";
 echo '<Redirect method="GET">input.php?Digits=2
 </Redirect>';
 }
 break;
 }
 echo '</Response>';
?>

2. Now, create a file called screen-caller.xml:
<?xml version="1.0" encoding="UTF-8"?>
<Response>
 <Gather action="screen.php" numDigits="1">
 <Say>You have an incoming call.</Say>
 <Say>To accept the call, press 1.</Say>
 <Say>To reject the call, press any other key.</Say>
 </Gather>
 <!-- If customer doesn't input anything, prompt and
 try again. -->
 <Say>Sorry, I didn't get your response.</Say>
 <Redirect>screen-caller.xml</Redirect>
</Response>

3. Finally, let's create a file called screen.php:
<?php
 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
 echo '<Response>';
 $user_pushed = (int) $_REQUEST['Digits'];
 switch($user_pushed){
 case 1:
 echo '<Say>Connecting you to the caller. All calls
 are recorded.</Say>';
 break;
 default:

Building an IVR System

160

 echo '<Hangup />';
 break;
 }
 echo '</Response>';
?>

How it works…
In step 1, we updated extensions.php.

In step 2, we created screen-caller.xml and in step 3, we created screen.php.

This system builds on the original IVR we built in Chapter 1, Into the Frying Pan, but changes a
few files and adds two new pieces of functionalities.

First, we set the calls to record; we also include a message for the caller indicating that all
calls are recorded.

Second, we allow our agent to confirm whether they want to take the call. If the agent
presses 1, the call is accepted; otherwise, the call is hung up.

Logging and reporting calls
Another important aspect of IVRs is the ability to log calls. This helps us to go back and see
how many calls have come in and when.

When a call comes in, we will store the phone number and the date and time of the call.

We'll also build a basic monitor to view call logs.

Getting ready
The complete source code for this recipe can be found in the Chapter8/Recipe3/ folder.

How to do it…
Let's set up a simple call logging system that lets us track calls. When a caller calls in,
we'll update our database with a log of the call. Then, we'll be able to open a page and
view all the calls.

1. Open sql.sql and load the schema into your database.

Chapter 8

161

2. Update config.php to your website and make sure your phone tree variables
are set:
<?php
 $dbhost = ''; // YOUR DATABASE HOST
 $dbname = ''; // YOUR DATABASE NAME
 $dbuser = ''; // YOUR DATABASE USER
$dbpass = ''; // YOUR DATABASE PASS

 $directory = array(
 '1'=> array(
 'phone'=>'415-555-2222',
 'firstname' => 'Joe',
 'lastname' => 'Doe'
),
 '2'=> array(
 'phone'=>'415-555-3333',
 'firstname' => 'Eric',
 'lastname' => 'Anderson'
),
 '3'=> array(
 'phone'=>'415-555-4444',
 'firstname' => 'John',
 'lastname' => 'Easton'
),
);

3. Update listener.php as follows:
<?php
 include("config.php");
 include("pdo.class.php");
 $pdo = Db::singleton();

 $now = time();
 $sql = "INSERT INTO calls SET caller='{$_REQUEST['From']}',
call_time='{$now}'";
 $pdo->exec($sql);

 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
?>
<Response>

Building an IVR System

162

 <Gather action="input.php" numDigits="1">
 <Say>Welcome to my pretend company.</Say>
 <Say>For store hours, press 1.</Say>
 <Say>To speak to an agent, press 2.</Say>
 </Gather>
 <!-- If customer doesn't input anything, prompt and
 try again. -->
 <Say>Sorry, I didn't get your response.</Say>
 <Redirect>listener.php</Redirect>
</Response>

4. Now create a file called log.php as follows:
<?php
 include("config.php");
 include("pdo.class.php");
 $pdo = Db::singleton();

 $result = $pdo->query('SELECT caller, call_time FROM calls');
 echo '';
 while($row = $result->fetch()){
 echo 'A call came in on '.date("F j, Y, g:i a",
 $row['call_time']).' from '.$row['caller'].'';
 }
 echo '';
?>

How it works…
In step 1, we set up our database.

In step 2, we updated config.php that contains our company directory and our
database settings.

In step 3, we updated listener.php in order to add incoming calls to our database for
tracking purposes.

Finally, in step 4, we created a file called log.php that we can use to view a call log of
incoming calls.

Listener.php works the same as in our previous recipes but it also adds the calls to a table
in our database.

If we load log.php, we get a nice view of the calls we've had.

Chapter 8

163

Looking up HighriseHQ contacts on
incoming calls

I'm using Highrise for this example, as that is the CRM I use. But you can quickly modify this
for any CRM.

This IVR integration will check your incoming call and see if the phone number exists in your
Highrise contacts. If it does, it will add the caller's name to the database record.

You'll need a Highrise account to do this, and you can get one at http://highrisehq.com.

There are two credentials you'll need for this, your account name and your API key.

You can get your account name from the address bar of your browser:

And then, you can find your API key by clicking My Account and then going to API token:

Getting ready
The complete source code for this recipe can be found in the Chapter8/Recipe4/ folder.

Building an IVR System

164

How to do it…
We're going to enhance our IVR system to perform a look-up on our HighriseHQ account and
create a log if the caller is known to us. When we view log.php, we will see whether the
caller was known to us or not from Highrise.

1. Download the PHP Highrise API from https://github.com/ignaciovazquez/
Highrise-PHP-Api/ and upload the HighRiseAPI.class.php file to your server
in the Services folder.

2. Open sql.sql and copy the schema to your database.

3. Update config.php to your website and make sure your phone tree variables
are set:
<?php
 $dbhost = '';//YOUR DATABASE HOST
 $dbname = '';//YOUR DATABASE NAME
 $dbuser = '';//YOUR DATABASE USER
 $dbpass = '';//YOUR DATABASE PASS

 $highrise_account = '';
 $highrise_apikey = '';

 $directory = array(
 '1'=> array(
 'phone'=>'415-555-2222',
 'firstname' => 'Joe',
 'lastname' => 'Doe'
),
 '2'=> array(
 'phone'=>'415-555-3333',
 'firstname' => 'Eric',
 'lastname' => 'Anderson'
),
 '3'=> array(
 'phone'=>'415-555-4444',
 'firstname' => 'John',
 'lastname' => 'Easton'
),
);

4. Update listener.php as follows:
<?php
 include("config.php");
 include("pdo.class.php");

Chapter 8

165

 $pdo = Db::singleton();

 require_once("Services/HighriseAPI.class.php");

 $highrise = new HighriseAPI();
 $highrise->debug = false;
 $highrise->setAccount($highrise_account);
 $highrise->setToken($highrise_apikey);

 $people = $highrise->findPeopleBySearchCriteria(
 array('phone'=>$_REQUEST['From'])
);
 if(count($people)){
 $p = $people[0];
 $name =$p->getFirstName().' '.$p->getLastName();
 $now = time();
 $sql = "INSERT INTO calls SET caller_
name='{$name}',caller='{$_REQUEST['From']}',
 call_time='{$now}'";
 $pdo->exec($sql);
 }else{
 $now = time();
 $sql = "INSERT INTO calls SET caller='{$_REQUEST['From']}',
call_time='{$now}'";
 $pdo->exec($sql);
 }
 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
?>
<Response>
 <Gather action="input.php" numDigits="1">
 <Say>Welcome to my pretend company.</Say>
 <Say>For store hours, press 1.</Say>
 <Say>To speak to an agent, press 2.</Say>
 </Gather>
 <!-- If customer doesn't input anything, prompt and
 try again. -->
 <Say>Sorry, I didn't get your response.</Say>
 <Redirect>listener.php</Redirect>
</Response>

Building an IVR System

166

5. Now update log.php as follows:
<?php
 include("config.php");
 include("pdo.class.php");
 $pdo = Db::singleton();

 $result = $pdo->query('SELECT caller, call_time FROM
 calls');
 echo '';
 while($row = $result->fetch()){
 if(!empty($row['caller_name'])){
 echo 'A call came in on '.date("F j, Y, g:i a",
 $row['call_time']).' from '.$row['caller'].'
('.$row['caller_name'].')';
 }else{
 echo 'A call came in on '.date("F j, Y, g:i a",
 $row['call_time']).' from '.$row['caller'].'';
 }
 }
 echo '';
?>

How it works…
In step 1, we download the Highrise API PHP library.

In step 2, we set up our database

In step 3, we uploaded config.php that contains our company directory and also our
database information and credentials to talk to our Highrise account.

In step 4, we updated listener.php to perform a look-up of our Highrise account, based
on the incoming phone number, and look for a match. If a match is found, it stores the caller's
name in the call log as well as the phone number. Otherwise, it stores the phone number.

In step 5, we updated log.php to display the caller's name if it is stored.

We could use other CRMs for this but I'm a heavy Highrise user and use their API quite a lot;
so that's why I chose to work with this one here.

Chapter 8

167

Getting directions
Let's expand our IVR menu options a little. We're going to add a new option to let our callers
request directions.

This will also demonstrate how to make the menu do more.

This example will set up the IVR menu so that if the caller presses 3, they will be informed of our
main office; it will also prompt them to press another key for directions from different locations.

Getting Ready
The complete source code for this recipe can be found in the Chapter8/Recipe5/ folder.

How to do it...
Let's expand our IVR app to include some more options, such as business directions. We'll
also add an option to make our phones quack like a duck just to make it interesting.

1. Update listener.php as follows:
<?php
 include("config.php");
 include("pdo.class.php");
 $pdo = Db::singleton();

 require_once("Services/HighriseAPI.class.php");

 $highrise = new HighriseAPI();
 $highrise->debug = false;
 $highrise->setAccount($highrise_account);
 $highrise->setToken($highrise_apikey);

 $people = $highrise->findPeopleBySearchCriteria(
 array('phone'=>$_REQUEST['From'])
);
 if(count($people)){
 $p = $people[0];
 $name =$p->getFirstName().' '.$p->getLastName();
 $now = time();
 $sql = "INSERT INTO calls SET caller_
name='{$name}',caller='{$_REQUEST['From']}',
 call_time='{$now}'";
 $pdo->exec($sql);
 }else{

Building an IVR System

168

 $now = time();
 $sql = "INSERT INTO calls SET caller=
 '{$_REQUEST['From']}', call_time='{$now}'";
 $pdo->exec($sql);
 }
 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
?>
<Response>
 <Gather action="input.php" numDigits="1">
 <Say>Welcome to my pretend company.</Say>
 <Say>For store hours, press 1.</Say>
 <Say>For directions, press 2</Say>
 <Say>To speak to an agent, press 3.</Say>
 <Say>To speak to a duck, press 4.</Say>
 </Gather>
 <!-- If customer doesn't input anything, prompt and
 try again. -->
 <Say>Sorry, I didn't get your response.</Say>
 <Redirect>listener.php</Redirect>
</Response>

2. Update input.php as follows:
<?php
 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
 echo '<Response>';
 $user_pushedo = (int) $_REQUEST['Digits'];
 switch($user_pushed){
 case 1:
 echo '<Say>Our store hours are 8 AM to 8 PM
 everyday.</Say>';
 break;
 case '2';
 echo '<Say>My pretend company is located at 101 4th
 Street in Neverland</Say>';
 echo '<Gather action="input.php" numDigits="1">';
 echo '<Say>For directions from the First Star to the
 right, press 5</Say>';
 echo '<Say>For directions from San Jose, press
 6</Say>';
 echo '</Gather>';
 echo "<Say>Sorry, I didn't get your response.</Say>";
 echo '<Redirect method="GET">listener.php
 </Redirect>';

Chapter 8

169

 break;
 case 3:
 echo '<Gather action="extensions.php"
 numDigits="1">';
 echo "<Say>Please enter your party's extension.
 </Say>";
 echo '<Say>Press 0 to return to the main menu</Say>';
 echo '</Gather>';
 echo "<Say>Sorry, I didn't get your response.</Say>";
 echo '<Redirect method="GET">input.php?Digits=2</Redirect>';
 break;
 case 4:
 echo '<Play>duck.mp3</Play>';
 break;
 case 5:
 echo '<Say>Take the first star to the right and
 follow it straight on to the dawn.</Say>';
 break;
 case 6:
 echo '<Say>Take Cal Train to the Milbrae BART
 station. Take any Bart train to Powell Street
 </Say>';
 break;
 default:
 echo "<Say>Sorry, I can't do that yet.</Say>";
 echo '<Redirect>listener.php</Redirect>';
 break;
 }
 echo '<Pause/>';
 echo '<Say>Main Menu</Say>';
 echo '<Redirect>listener.php</Redirect>';
 echo '</Response>';
?>

3. Upload a new file called duck.mp3.

How it works…
We've just updated listener.php and input.php.

Now, when a caller calls in, they get a few other options that give them directions to the
nearest office. They can also hear a duck quack.

The quack is to demonstrate the <play> verb from Twilio instead of just saying words; we can
also play any MP3 or WAV file simply by adding the <play>file.mp3</play> command
into our workflow.

Building an IVR System

170

Leaving a message
OK, instead of hanging up the call when an agent doesn't answer, let's forward them to a
company voice mailbox.

Getting Ready
The complete source code for this recipe can be found in the Chapter8/Recipe6/ folder.

How to do it...
We're going to set this up so that, if a caller can't reach an agent, or just generally wants to
leave a message, they can do so by pressing 5.

1. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Update config.php to your website and make sure the following variables are set:
<?php
$dbhost = '';//YOUR DATABASE HOST
$dbname = '';//YOUR DATABASE NAME
$dbuser = '';//YOUR DATABASE USER
$dbpass = '';//YOUR DATABASE PASS

 $highrise_account = '';
 $highrise_apikey = '';

 $accountsid = '';//YOUR TWILIO ACCOUNT SID
 $authtoken = '';//YOUR TWILIO AUTH TOKEN
 $fromNumber = '';// PHONE NUMBER CALLS WILL
 COME FROM

 $directory = array(
 '1'=> array(
 'phone'=>'415-555-2222',
 'firstname' => 'Joe',
 'lastname' => 'Doe'
),
 '2'=> array(
 'phone'=>'415-555-3333',

Chapter 8

171

 'firstname' => 'Eric',
 'lastname' => 'Anderson'
),
 '3'=> array(
 'phone'=>'415-555-4444',
 'firstname' => 'John',
 'lastname' => 'Easton'
),
);

4. Update listener.php as follows:
<?php
 include("config.php");
 include("pdo.class.php");
 $pdo = Db::singleton();

 require_once("Services/HighriseAPI.class.php");

 $highrise = new HighriseAPI();
 $highrise->debug = false;
 $highrise->setAccount($highrise_account);
 $highrise->setToken($highrise_apikey);

 $people = $highrise->findPeopleBySearchCriteria(
 array('phone'=>$_REQUEST['From'])
);
 if(count($people)){
 $p = $people[0];
 $name =$p->getFirstName().' '.$p->getLastName();
 $now = time();
 $sql = "INSERT INTO calls SET caller_
name='{$name}',caller='{$_REQUEST['From']}', call_time='{$now}'";
 $pdo->exec($sql);
 }else{
 $now = time();
 $sql = "INSERT INTO calls SET caller='{$_REQUEST['From']}',
call_time='{$now}'";
 $pdo->exec($sql);
 }
 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
?>
<Response>

Building an IVR System

172

 <Gather action="input.php" numDigits="1">
 <Say>Welcome to my pretend company.</Say>
 <Say>For store hours, press 1.</Say>
 <Say>For directions, press 2</Say>
 <Say>To speak to an agent, press 3.</Say>
 <Say>To speak to a duck, press 4.</Say>
 <Say>To leave a message, press 5.</Say>
 </Gather>
 <!-- If customer doesn't input anything, prompt and
 try again. -->
 <Say>Sorry, I didn't get your response.</Say>
 <Redirect>listener.php</Redirect>
</Response>

5. Update input.php as follows:
<?php
 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
 echo '<Response>';
 $user_pushed = (int) $_REQUEST['Digits'];
 switch($user_pushed){
 case 1:
 echo '<Say>Our store hours are 8 AM to 8 PM
 everyday.</Say>';
 break;
 case '2';
 echo '<Say>My pretend company is located at 101 4th
 Street in Neverland</Say>';
 echo '<Gather action="input.php" numDigits="1">';
 echo '<Say>For directions from the First Star to the
 right, press 6</Say>';
 echo '<Say>For directions from San Jose, press 7</Say>';
 echo '</Gather>';
 echo "<Say>Sorry, I didn't get your response.</Say>";
 echo '<Redirect method="GET">listener.php
 </Redirect>';
 break;
 case 3:
 echo '<Gather action="extensions.php"
 numDigits="1">';
 echo "<Say>Please enter your party's extension.
 </Say>";
 echo '<Say>Press 0 to return to the main menu</Say>';
 echo '</Gather>';
 echo "<Say>Sorry, I didn't get your response.</Say>";

Chapter 8

173

 echo '<Redirect method="GET">input.php?Digits=2
 </Redirect>';
 break;
 case 4:
 echo '<Play>duck.mp3</Play>';
 break;
 case 5:
 echo '<Say>Please leave a message.</Say>';
 echo '<Redirect>voicemail.php</Redirect>';
 break;
 case 6:
 echo '<Say>Take the first star to the right
 and follow it straight on to the dawn.</Say>';
 break;
 case 7:
 echo '<Say>Take Cal Train to the Milbrae BART
 station. Take any Bart train to Powell Street
 </Say>';
 break;
 default:
 echo "<Say>Sorry, I can't do that yet.</Say>";
 echo '<Redirect>listener.php</Redirect>';
 break;
 }
 echo '<Pause/>';
 echo '<Say>Main Menu</Say>';
 echo '<Redirect>listener.php</Redirect>';
 echo '</Response>';
?>

6. Update screen.php as follows:
<?php
 header('Content-type: text/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
 echo '<Response>';
 $user_pushed = (int) $_REQUEST['Digits'];
 switch($user_pushed){
 case 1:
 echo '<Say>Connecting you to the caller. All calls
 are
 recorded.</Say>';
 break;
 default:
 echo '<Pause/>';
 echo '<Say>Main Menu</Say>';

Building an IVR System

174

 echo '<Redirect>listener.php</Redirect>';
 break;
 }
 echo '</Response>';
?>

7. Upload a new file called voicemail.php as follows:
<?php
 include 'Services/Twilio.php';
 include("config.php");

 $myemail = 'MYEMAIL@me.com';
 $message = 'Pretend company is not available right now.
 Please leave a message.';
 $transcribe = true;

 $client = new Services_Twilio($accountsid, $authtoken);
 $response = new Services_Twilio_Twiml();

 //setup from email headers
 $headers = 'From: voicemail@mywebsite.com' . "\r\n"
 .'Reply-To: voicemail@mywebsite.com' . "\r\n" .'X-
 Mailer: Twilio Voicemail';

 // grab the to and from phone numbers
 $from = strlen($_REQUEST['From']) ? $_REQUEST['From'] :
 $_REQUEST['Caller'];
 $to = strlen($_REQUEST['To']) ? $_REQUEST['To'] :
 $_REQUEST['Called'];

 if(strtolower($_REQUEST['TranscriptionStatus']) ==
 "completed") {
 $body = "You have a new voicemail from " . ($from) .
 "\n\n";
 $body .= "Text of the transcribed voicemail:
 \n{$_REQUEST['TranscriptionText']}.\n\n";
 $body .= "Click this link to listen to the message:
 \n{$_REQUEST['RecordingUrl']}.mp3";
 mail($myemail, "New Voicemail Message from " . ($from),
 $body, $headers);
 die;
 } else if(strtolower($_REQUEST['TranscriptionStatus']) ==
 "failed") {
 $body = "You have a new voicemail from ".($from)."
 \n\n";

Chapter 8

175

 $body .= "Click this link to listen to the message:
 \n{$_REQUEST['RecordingUrl']}.mp3";
 mail($myemail, "New Voicemail Message from " . ($from),
 $body, $headers);
 die;
 } else if(strlen($_REQUEST['RecordingUrl'])) {
 $response->say("Thanks. Good bye.");
 $response->hangup();
 if(strlen($transcribe) && strtolower($transcribe) !=
 'true') {
 $body = "You have a new voicemail from
 ".($from)."\n\n";
 $body .= "Click this link to listen to the message:
 \n{$_REQUEST['RecordingUrl']}.mp3";
 mail($myemail, "New Voicemail Message from " .
 ($from), $body, $headers);
 }
 } else {
 $response->say($message);
 if($transcribe)
 $params = array("transcribe"=>"true",
 "transcribeCallback"=>"{$_SERVER['SCRIPT_URI']}");
 else
 $params = array();
 $response->record($params);
 }
 $response->Respond();
?>

How it works…
We downloaded the Twilio PHP Library and uploaded it to our Services folder.

We've also updated config.php, listener.php, screen.php, and input.php.

Now, when the caller calls in, they'll get a list of options, including leaving a voicemail message.

Also, if a call to an agent doesn't go through, we're going to redirect that call back to the main
menu instead of hanging up the call. This gives the caller the option to leave a new voicemail
message for the company.

Building an IVR System

176

Sending an SMS to your Salesforce.com
contacts

This last recipe is slightly different. Since we've been talking about IVRs and touching
on CRMs, I thought you might find it interesting to make use of another popular CRM,
www.Salesforce.com.

This system will grab the contacts out of our www.Salesforce.com account and send them
each an SMS.

You will need a www.Salesforce.com account for this; you can get a free developer account
at http://developer.force.com/.

Then you have to enter three credentials: your Salesforce username, your password, and
your security token. You can find your security token by going to "setup" and clicking on
Reset Security Token, as shown in the following screenshot:

This will then be emailed to you as Salesforce doesn't actually keep your token. They store a
hash of it in a similar way to how you would store passwords.

Getting Ready
The complete source code for this recipe can be found in the Chapter8/Recipe7 folder.

Chapter 8

177

How to do it...
This app will use Salesforce's www.force.com API to send an SMS message to our contacts.

1. Download the www.Salesforce.com PHP toolkit from http://wiki.
developerforce.com/page/PHP_Toolkit_13.1 and upload the files
into your Services folder.

2. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip it.

3. Upload the Services/ folder on your website.

4. Upload config.php on your website and make sure the following variables are set:
<?php

define("SF_USERNAME", "");
define("SF_PASSWORD", "");
define("SF_SECURITY_TOKEN", "");

$accountsid = '';//YOUR TWILIO ACCOUNT SID
$authtoken = '';//YOUR TWILIO AUTH TOKEN
$fromNumber = '';//PHONE NUMBER CALLS WILL COME FROM

5. Upload a file called force.php on your server:
<?php
 session_start();
 include 'Services/Twilio.php';
 include("config.php");
 require_once ('Services/soapclient/SforceEnterpriseClient.php');

 $message = "{{name}} Try our new hot and ready pizza!";

 $client = new Services_Twilio($accountsid, $authtoken);

 $mySforceConnection = new SforceEnterpriseClient();
 $mySforceConnection->createConnection("Services/soapclient/
enterprise.wsdl.xml");
 $mySforceConnection->login(SF_USERNAME,
 SF_PASSWORD.SF_SECURITY_TOKEN);

 $query = "SELECT Id, FirstName, LastName, Phone from Contact";
 $response = $mySforceConnection->query($query);

 echo "Results of query '$query'

\n";

Building an IVR System

178

 foreach ($response->records as $record) {
 echo "Sending message to ".$record->FirstName . " " .
 $record->LastName . " at " . $record->Phone . "
\n";
 $msg = str_replace("{{name}}",$record->FirstName,$message);
 $sid = send_sms($record->Phone, $msg);
 }
 exit;

 function send_sms($number,$message){
 global $client,$fromNumber;
 $sms = $client->account->sms_messages->create(
 $fromNumber,
 $number,
 $message
);
 return $sms->sid;
 }

How it works...
In step 1, we downloaded the PHP toolkit from www.Salesforce.com; this toolkit lets us
talk to the www.Salesforce.com API.

In steps 2 and 3, we downloaded and installed the Twilio Helper Library for PHP; this library is
the heart of your Twilio-powered apps.

In step 4, we uploaded config.php that contains our authentication information to talk to
the Salesforce and Twilio APIs.

Finally, in step 5, we uploaded our force.php file.

force.php will connect to Twilio and www.Salesforce.com and perform a query to get all
of our contacts. It will then send each of them a personalized SMS message.

9
Building Your Own PBX

In this chapter we will cover the following:

 f Getting started with PBX

 f Setting up a subaccount for each user

 f Letting a user purchase a custom phone number

 f Allowing users to make calls from their call logs

 f Allowing incoming phone calls

 f Allowing outgoing phone calls

 f Deleting a subaccount

Introduction
We're going to build a basic PBX system today that will let you have multiple users, each with
their own phone number, and also give them the ability to handle calls.

This will serve as a basic Google Voice type system.

We're going to cover how to set up each user account with their own subaccount at Twilio and
assign each subaccount with a phone number.

We're also going to set those phone numbers up to call the user's registered phone number,
allowing the user to see a log of incoming calls and use "Click-to-Call" for those incoming
phone numbers, and finally we're going to show you how to delete the user from your site.

We're also going to use a handy PHP micro framework called Jolt to build this application.

Building Your Own PBX

180

Getting started with PBX
First, let's set up our basic application.

As I previously mentioned, we're building this application using the Jolt micro framework,
which is a mini MVC framework that I developed and used for many applications.

I'm going to go over a basic introduction to it so that you can see how it all works and then as
we go through each recipe, we'll build on our application until we get a nice, handy system.

You can download the Jolt framework from http://joltframework.com/.

Jolt works in an interesting way; we set it up so that the get and post portions of the site are
separated as shown in the following code snippet:

<?php
include 'jolt.php';
$app = new Jolt('my app');
$app->get('/greet', function () use ($app){
 // render a view
 $app->render('page', array(
 "pageTitle"=>"Greetings",
 "body"=>"Greetings world!"
));
});
$app->post('/greet', function () use ($app){
 // render a view
 $app->render('page', array(
 "pageTitle"=>"Greetings",
 "body"=>"Greetings world!"
));
});
$app->get('/', function() use ($app) {
 $app->render('home');
});
$app->listen();
?>

This will build a basic application that has an index and a greeting page. However,
the greetings page shows both the get() and post() methods, which means that a
loading/greeting with get (meaning, not called from a form) will result in one page, and a
loading/greeting as a form submission will get you something entirely different. You can also
add route(), if you don't care about get() or post(), or add put() and delete().

Chapter 9

181

Another useful feature of Jolt is the session store; if we called the $app-
>store("name","test"); method, we can call $name = $app->store('name');
at any point in time and return the variable we assigned. This is useful for storing data that
needs to be retrieved across the site, such as a logged-in user.

One thing you will notice is that instead of having multiple PHP files for each page, we created
a new route.

Getting ready
The complete source code for this recipe can be found in the Chapter9/Recipe1 folder in
the source code for this book.

How to do it...
This recipe will download the necessary pieces and set it up for our PBX.

We're going to set up the application using the following steps:

1. Download the Jolt framework from http://joltframework.com/.

2. Create a folder called system.

3. Upload jolt.php, functions.php, and pdo.class.php to the system folder.

4. Upload the .htaccess file to your website.
RewriteEngine On
RewriteBase /
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^ index.php [QSA,L]

Jolt does require mod_rewrite, which is a standard on most
server setups.

5. Create a folder called views.

6. Upload a file in views called layout.php with the following content:
<html>
<head>
 <title><?=$pageTitle?></title>
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <link href="//netdna.bootstrapcdn.com/twitter-bootstrap/2.3.0/
css/bootstrap-combined.no-icons.min.css" rel="stylesheet">

Building Your Own PBX

182

 <link href="//netdna.bootstrapcdn.com/font-awesome/3.0.2/css/
font-awesome.css" rel="stylesheet">
 <link href="//netdna.bootstrapcdn.com/font-awesome/3.0.2/css/
font-awesome-ie7.css" rel="stylesheet">
 <link href="//netdna.bootstrapcdn.com/twitter-bootstrap/2.3.0/
css/bootstrap-responsive.min.css" rel="stylesheet">
 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/
jquery.min.js"></script>
 <script src="//netdna.bootstrapcdn.com/twitter-bootstrap/2.3.0/
js/bootstrap.min.js"></script>
</head>
<body>
 <div class="container">
 <div class="masthead">
 <h3 class="muted">My PBX</h3>
 <div class="navbar">
 <div class="navbar-inner">
 <div class="container">
 <ul class="nav">
 <li class="active"><a href="<?=$uri?>/">Home</
li>
 <a href="<?=$uri?>/login">Login
 <a href="<?=$uri?>/signup">Signup

 </div>
 </div>
 </div><!-- /.navbar -->
 </div>
 <?=$pageContent?>
 <hr />
 <div class="footer">
 <p>© MY PBX <?=date("Y")?></p>
 </div>
 </div> <!-- /container -->
</body>
</html>

7. Download the Twilio Helper Library from https://github.com/twilio/twilio-
php/zipball/master and unzip the file.

8. Upload the Services/ folder to your website.

9. Add sql.sql to your database.

Chapter 9

183

10. Upload config.ini to the site that contains the following content:
;site settings
site.name = my site
site.url =

; rendering vars
views.root = views
views.layout = layout

; session vars
cookies.secret = IeNj0yt0sQu33zeflUFfym0nk1e
cookies.flash = _F

; twilio vars
twilio.accountsid =
twilio.authtoken =
twilio.fromNumber =
; database vars
mysql.dbhost =
mysql.dbname =
mysql.dbuser =
mysql.dbpass =

You may notice this file is laid out slightly differently than your
previous config.php files because of the way this framework
works. Instead of separate variables, we store them in an .ini
file that is read by the Jolt system store. Then, instead of calling
$dbhost, we will call $app->option('mysql.dbhost').

11. Upload index.php (containing the following content) to your site as follows:
<?php
include 'Services/Twilio.php';
require("config.php");
require("system/jolt.php");
require("system/pdo.class.php");
require("system/functions.php");

$_GET['route'] = isset($_GET['route']) ? '/'.$_GET['route'] : '/';
$app = new Jolt('site',false);
$app->option('source', 'config.ini');
$mysiteURL = $app->option('site.url');

$app->get('/', function() use ($app){

Building Your Own PBX

184

 $app->render('home');
});
$app->listen();

12. Upload the following home.php file to your views folder:
<div class="jumbotron">
 <h1>My PBX</h1>
 <p class="lead">
 This is a basic PBX system built for the Twilio Cookbook
 </p>
</div>

How it works...
In steps 1, 2, 3, 4, and 5, we downloaded and installed the Jolt framework for PHP. We also
set up a system and views folder.

In step 6, we created layout.php, which is our layout for the site.

In steps 7 and 8, we downloaded and installed the Twilio Helper Library for PHP. This library is
the heart of your Twilio-powered apps.

In step 9, we loaded our database schema into our database.

In step 10, we set up our config.ini file.

In step 11, we set up our barebones index.php file, which doesn't do much right now.

Finally, in step 12, we set up home.php, which is the first page people will see when they load
the site in their browser.

 When you load the app now, you'll go to the index file, which is specified by
$app->get("/") route.

All this page does is load the home.php file found in the views folder.

We've set up the basic framework for our PBX system. Now let's make it actually do something.

Setting up a subaccount for each user
Before we can do anything else, we have to allow users to sign up.

To do this, we're going to build a joining form for users to join your PBX system. This form will
also create their subaccount under your main Twilio account. Subaccounts make it easier to
track a user's usage.

Chapter 9

185

Getting ready
The complete source code for this recipe can be found in the Chapter9/Recipe2 folder in
the source code for this book.

How to do it...
Now that we've set up our basic framework, let's build a form to allow users to sign up and
have Twilio create subaccounts for them.

1. Upload the following index.php file to your website:
<?php
include 'Services/Twilio.php';
require("config.php");
require("system/jolt.php");
require("system/pdo.class.php");
require("system/functions.php");

$_GET['route'] = isset($_GET['route']) ? '/'.$_GET['route'] : '/';
$app = new Jolt('site',false);
$app->option('source', 'config.ini');
#$pdo = Db::singleton();
$mysiteURL = $app->option('site.url');

$app->get('/signup', function() use ($app){
 $app->render('register', array(),'layout');
});
$app->post('/signup', function() use ($app){
 $client = new Services_Twilio($app->store('twilio.accountsid'),
$app->store('twilio.authtoken'));
 extract($_POST);
 $timestamp = strtotime($timestamp);
 $subaccount = $client->accounts->create(array(
 "FriendlyName" => $email
));
 $sid = $subaccount->sid;
 $token = $subaccount->auth_token;
 $sql = "INSERT INTO 'user' SET `name`='{$name}',`email`='{$email
}',`password`='{$password}',`phone_number`='{$phone_number}',`sid`
='{$sid}',`token`='{$token}',`status`=1";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $uid = $pdo->lastInsertId();
 $app->store('user',$uid);

Building Your Own PBX

186

$app->redirect($app->getBaseUri().'/phone-number');
});
$app->get('/', function() use ($app){
 $app->render('home');
});
$app->listen();

2. Upload the following register.php file in your views folder:
<h2>Sign up</h2>
<form class="form-horizontal" action="<?=$uri?>/signup"
method="POST">
<table>
<tr>
 <td>Your Name</td>
 <td><input type="text" name="name" /></td>
</tr>
<tr>
 <td>Your Email</td>
 <td><input type="text" name="email" /></td>
</tr>
<tr>
 <td>Your Password</td>
 <td><input type="text" name="password" /></td>
</tr>
<tr>
 <td>Your Phone Number</td>
 <td><input type="text" name="phone_number" /></td>
</tr>
</table>
<button type="submit">Sign up</button>
</form>

How it works...
In step 1, we updated index.php to include the logic for the sign-up page.

In step 2, we uploaded register.php, which is a new view.

Now, when a user signs up, we will send his/her e-mail address to Twilio to create a
subaccount. Then, Twilio will store his/her information in the database.

Chapter 9

187

Letting a user purchase a custom phone
number

Ok, once a user has signed up, he/she is going to need a phone number that he/she can call
his/her own.

On signup, we forward the user to the /phone-number object, which is what we'll build
in this recipe.

Getting ready
The complete source code for this recipe can be found in the Chapter9/Recipe3 folder in
the source code for this book.

How to do it...
Our app will walk users through the process of searching for and purchasing a phone number
using the following steps:

1. Update the following index.php file:
<?php
include 'Services/Twilio.php';
require("config.php");
require("system/jolt.php");
require("system/pdo.class.php");
require("system/functions.php");

$_GET['route'] = isset($_GET['route']) ? '/'.$_GET['route'] : '/';
$app = new Jolt('site',false);
$app->option('source', 'config.ini');
#$pdo = Db::singleton();
$mysiteURL = $app->option('site.url');

$app->condition('signed_in', function () use ($app) {
 $app->redirect($app->getBaseUri().'/login',!$app-
>store('user'));
});

$app->get('/login', function() use ($app){
 $app->render('login', array(),'layout');
});
$app->post('/login', function() use ($app){

Building Your Own PBX

188

 $sql = "SELECT * FROM `user` WHERE `email`='{$_POST['user']}'
AND `password`='{$_POST['pass']}'";
 $pdo = Db::singleton();
 $res = $pdo->query($sql);
 $user = $res->fetch();
 if(isset($user['ID'])){
 $app->store('user',$user['ID']);
 $app->redirect($app->getBaseUri().'/home');
 }else{
 $app->redirect($app->getBaseUri().'/login');
 }
});
$app->get('/signup', function() use ($app){
 $app->render('register', array(),'layout');
});
$app->post('/signup', function() use ($app){
 $client = new Services_Twilio($app->store('twilio.accountsid'),
$app->store('twilio.authtoken'));
 extract($_POST);
 $timestamp = strtotime($timestamp);
 $subaccount = $client->accounts->create(array(
 "FriendlyName" => $email
));
 $sid = $subaccount->sid;
 $token = $subaccount->auth_token;
 $sql = "INSERT INTO 'user' SET `name`='{$name}',`email`='{$email
}',`password`='{$password}',`phone_number`='{$phone_number}',`sid`
='{$sid}',`token`='{$token}',`status`=1";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $uid = $pdo->lastInsertId();
 $app->store('user',$uid);
 // log user in
 $app->redirect($app->getBaseUri().'/phone-number');
});
$app->get('/phone-number', function() use ($app){
 $app->condition('signed_in');
 $user = $app->store('user');
 $client = new Services_Twilio($user['sid'], $user['token']);
 $app->render('phone-number');
});

$app->post("search", function() use ($app){
 $app->condition('signed_in');
 $user = get_user($app->store('user'));

Chapter 9

189

 $client = new Services_Twilio($user['sid'], $user['token']);
 $SearchParams = array();
 $SearchParams['InPostalCode'] = !empty($_POST['postal_code']) ?
trim($_POST['postal_code']) : '';
 $SearchParams['NearNumber'] = !empty($_POST['near_number']) ?
trim($_POST['near_number']) : '';
 $SearchParams['Contains'] = !empty($_POST['contains'])? trim($_
POST['contains']) : '' ;
 try {
 $numbers = $client->account->available_phone_numbers-
>getList('US', 'Local', $SearchParams);
 if(empty($numbers)) {
 $err = urlencode("We didn't find any phone numbers by that
search");
 $app->redirect($app->getBaseUri().'/phone-
number?msg='.$err);
 exit(0);
 }
 } catch (Exception $e) {
 $err = urlencode("Error processing search:
{$e->getMessage()}");
 $app->redirect($app->getBaseUri().'/phone-number?msg='.$err);
 exit(0);
 }
 $app->render('search',array('numbers'=>$numbers));
});

$app->post("buy", function() use ($app){
 $app->condition('signed_in');
 $user = get_user($app->store('user'));
 $client = new Services_Twilio($user['sid'], $user['token']);
 $PhoneNumber = $_POST['PhoneNumber'];
 try {
 $number = $client->account->incoming_phone_numbers-
>create(array(
 'PhoneNumber' => $PhoneNumber
));
 $phsid = $number->sid;
 if (!empty($phsid)){
 $sql = "INSERT INTO numbers (user_id,number,sid) VALUES('{$u
ser['ID']}','{$PhoneNumber}','{$phsid}');";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $fid = $pdo->lastInsertId();
 $ret = editNumber($phsid,array(

Building Your Own PBX

190

 "FriendlyName"=>$PhoneNumber,
 "VoiceUrl" => $mysiteURL."/voice?id=".$fid,
 "VoiceMethod" => "POST",
),$user['sid'], $user['token']);
 }
 } catch (Exception $e) {
 $err = urlencode("Error purchasing number:
{$e->getMessage()}");
 $app->redirect($app->getBaseUri().'/phone-number?msg='.$err);
 exit(0);
 }
 $msg = urlencode("Thank you for purchasing $PhoneNumber");
 header("Location: index.php?msg=$msg");
 $app->redirect($app->getBaseUri().'/home?msg='.$msg);
 exit(0);
});
$app->route('/voice', function() use ($app){

});
$app->get('/transcribe', function() use ($app){

});
$app->get('/logout', function() use ($app){
 $app->store('user',0);
 $app->redirect($app->getBaseUri().'/login');
});
$app->get('/home', function() use ($app){
 $app->condition('signed_in');

});
$app->get('/', function() use ($app){
 $app->render('home');
});
$app->listen();

2. Create a file called phone-number.php in your views folder with the
following content:
<h3>Find a number to buy</h3>
<?php if(!empty($_GET['msg'])): ?>
 <p class="msg"><?php echo htmlspecialchars($_GET['msg']); ?></p>
<?php endif;?>
<form method="POST" action="<?=$uri?>/search">
<label>near US postal code (e.g. 94117): </label><input
type="text" size="4" name="postal_code"/>

Chapter 9

191

<label>near this other number (e.g. +14156562345): </label><input
type="text" size="7" name="near_number"/>

<label>matching this pattern (e.g. 415***EPIC): </label><input
type="text" size="7" name="contains"/>

<input type="hidden" name="action" value="search" />
<input type="submit" name="submit" value="SEARCH"/>
</form>

3. Create a file called search.php in your views folder with the following content:
<h3>Choose a Twilio number to buy</h3>
<?php foreach($numbers->available_phone_numbers as $number){ ?>
 <form method="POST" action="<?=$uri?>/buy">
 <label><?php echo $number->friendly_name ?></label>
 <input type="hidden" name="PhoneNumber" value="<?php echo
$number->phone_number ?>">
 <input type="hidden" name="action" value="buy" />
 <input type="submit" name="submit" value="BUY" />
 </form>
<?php } ?>

How it works...
In step 1, we updated our index.php file to include the ability to purchase phone numbers.

When the user first comes to the page, we check to make sure he/she is logged in; if he/she
is, we initialize the Twilio class using their credentials; otherwise, we present a form to log in.

Then we let them search for a phone number that they are interested in assigning to their
account. Once they find a phone number and assign it to themselves, we insert the number
in our database and instruct Twilio to forward all calls to /voice.

We'll touch on what /voice does shortly.

You may have also noticed that we set a condition:

$app->condition('signed_in', function () use ($app) {
 $app->redirect($app->getBaseUri().'/login',!$app-
>store('user'));
});

What this means is that whenever we call the $app->condition('signed_in');
condition, and it fails, then we can redirect the user to the login page.

This comes in handy for setting up sections that require a user to be logged in; we simply
add the $app->condition('signed_in'); line, and if a person is not logged in, they
get redirected to the login page.

Building Your Own PBX

192

Allowing users to make calls from their
call logs

We're going to give your user a place to view their call log.

We will display a list of incoming calls and give them the option to call back on these numbers.

Getting ready
The complete source code for this recipe can be found in the Chapter9/Recipe4 folder in
the source code for this book.

How to do it...
Now, let's build a section for our users to log in to using the following steps:

1. Update a file called index.php with the following content:
<?php
session_start();
include 'Services/Twilio.php';
require("system/jolt.php");
require("system/pdo.class.php");
require("system/functions.php");

$_GET['route'] = isset($_GET['route']) ? '/'.$_GET['route'] : '/';
$app = new Jolt('site',false);
$app->option('source', 'config.ini');
#$pdo = Db::singleton();
$mysiteURL = $app->option('site.url');

$app->condition('signed_in', function () use ($app) {
 $app->redirect($app->getBaseUri().'/login',!$app-
>store('user'));
});

$app->get('/login', function() use ($app){
 $app->render('login', array(),'layout');
});
$app->post('/login', function() use ($app){
 $sql = "SELECT * FROM `user` WHERE `email`='{$_POST['user']}'
AND `password`='{$_POST['pass']}'";
 $pdo = Db::singleton();

Chapter 9

193

 $res = $pdo->query($sql);
 $user = $res->fetch();
 if(isset($user['ID'])){
 $_SESSION['uid'] = $user['ID'];
 $app->store('user',$user['ID']);
 $app->redirect($app->getBaseUri().'/home');
 }else{
 $app->redirect($app->getBaseUri().'/login');
 }
});
$app->get('/signup', function() use ($app){
 $app->render('register', array(),'layout');
});
$app->post('/signup', function() use ($app){
 $client = new Services_Twilio($app->store('twilio.accountsid'),
$app->store('twilio.authtoken'));
 extract($_POST);
 $timestamp = strtotime($timestamp);
 $subaccount = $client->accounts->create(array(
 "FriendlyName" => $email
));
 $sid = $subaccount->sid;
 $token = $subaccount->auth_token;
 $sql = "INSERT INTO 'user' SET `name`='{$name}',`email`='{$email
}',`password`='{$password}',`phone_number`='{$phone_number}',`sid`
='{$sid}',`token`='{$token}',`status`=1";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $uid = $pdo->lastInsertId();
 $app->store('user',$uid);
 // log user in
 $app->redirect($app->getBaseUri().'/phone-number');
});
$app->get('/phone-number', function() use ($app){
 $app->condition('signed_in');
 $user = $app->store('user');
 $client = new Services_Twilio($user['sid'], $user['token']);
 $app->render('phone-number');
});

$app->post("search", function() use ($app){
 $app->condition('signed_in');
 $user = get_user($app->store('user'));

Building Your Own PBX

194

 $client = new Services_Twilio($user['sid'], $user['token']);
 $SearchParams = array();
 $SearchParams['InPostalCode'] = !empty($_POST['postal_code']) ?
trim($_POST['postal_code']) : '';
 $SearchParams['NearNumber'] = !empty($_POST['near_number']) ?
trim($_POST['near_number']) : '';
 $SearchParams['Contains'] = !empty($_POST['contains'])? trim($_
POST['contains']) : '' ;
 try {
 $numbers = $client->account->available_phone_numbers-
>getList('US', 'Local', $SearchParams);
 if(empty($numbers)) {
 $err = urlencode("We didn't find any phone numbers by that
search");
 $app->redirect($app->getBaseUri().'/phone-
number?msg='.$err);
 exit(0);
 }
 } catch (Exception $e) {
 $err = urlencode("Error processing search:
{$e->getMessage()}");
 $app->redirect($app->getBaseUri().'/phone-number?msg='.$err);
 exit(0);
 }
 $app->render('search',array('numbers'=>$numbers));
});

$app->post("buy", function() use ($app){
 $app->condition('signed_in');
 $user = get_user($app->store('user'));
 $client = new Services_Twilio($user['sid'], $user['token']);
 $PhoneNumber = $_POST['PhoneNumber'];
 try {
 $number = $client->account->incoming_phone_numbers-
>create(array(
 'PhoneNumber' => $PhoneNumber
));
 $phsid = $number->sid;
 if (!empty($phsid)){
 $sql = "INSERT INTO numbers (user_id,number,sid) VALUES('{$u
ser['ID']}','{$PhoneNumber}','{$phsid}');";
 $pdo = Db::singleton();
 $pdo->exec($sql);

Chapter 9

195

 $fid = $pdo->lastInsertId();
 $ret = editNumber($phsid,array(
 "FriendlyName"=>$PhoneNumber,
 "VoiceUrl" => $mysiteURL."/voice?id=".$fid,
 "VoiceMethod" => "POST",
),$user['sid'], $user['token']);
 }
 } catch (Exception $e) {
 $err = urlencode("Error purchasing number:
{$e->getMessage()}");
 $app->redirect($app->getBaseUri().'/phone-number?msg='.$err);
 exit(0);
 }
 $msg = urlencode("Thank you for purchasing $PhoneNumber");
 header("Location: index.php?msg=$msg");
 $app->redirect($app->getBaseUri().'/home?msg='.$msg);
 exit(0);
});
$app->route('/voice', function() use ($app){
});
$app->get('/transcribe', function() use ($app){
});
$app->get('/logout', function() use ($app){
 $app->store('user',0);
 $app->redirect($app->getBaseUri().'/login');
});
$app->get('/home', function() use ($app){
 $app->condition('signed_in');
 $uid = $app->store('user');
 $user = get_user($uid);
 $client = new Services_Twilio($user['sid'], $user['token']);
 $app->render('dashboard',array(
 'user'=>$user,
 'client'=>$client
));
});
$app->get('/delete', function() use ($app){
 $app->condition('signed_in');
});
$app->get('/', function() use ($app){
 $app->render('home');
});
$app->listen();

Building Your Own PBX

196

2. Upload a file called dashboard.php with the following content to your views folder:
<h2>My Number</h2>
<?php
 $pdo = Db::singleton();
 $sql = "SELECT * FROM `numbers` WHERE `user_
id`='{$user['ID']}'";
 $res = $pdo->query($sql);
 while($row = $res->fetch()){
 echo preg_replace("/[^0-9]/", "", $row['number']);
 }
 try {
?>
 <h2>My Call History</h2>
 <p>Here are a list of recent calls, you can click any number
to call them back, we will call your registered phone number and
then the caller</p>
 <table width=100% class="table table-hover tabled-striped">
 <thead>
 <tr>
 <th>From</th>
 <th>To</th>
 <th>Start Date</th>
 <th>End Date</th>
 <th>Duration</th>
 </tr>
 </thead>
 <tbody>
<?php
 foreach ($client->account->calls as $call) {
echo "<p>Call from $call->from to $call->to at $call-
>start_time of length $call->duration</p>";
 if(!stristr($call->direction,'inbound'))
 continue;
 $type = find_in_list($call->from);
?>
 <tr>
 <td><a href="<?=$uri?>/call?number=<?=urlencode($call-
>from)?>"><?=$call->from?></td>
 <td><?=$call->to?></td>
 <td><?=$call->start_time?></td>
 <td><?=$call->end_time?></td>
 <td><?=$call->duration?></td>
 </tr>
<?php

Chapter 9

197

 }
?>
 </tbody>
 </table>
<?php
 } catch (Exception $e) {
 echo 'Error: ' . $e->getMessage();
 }
?>
 <hr />
 <a href="<?=$uri?>/delete" onclick="return confirm('Are you sure
you wish to close your account?');">Delete My Account

How it works...
In step 1, we updated the index.php file.

In step 2, we uploaded dashboard.php to the views folder. This file checks if we're logged
in using the $app->condition('signed_in') method, which we discussed earlier, and if
we are, it displays all incoming calls we've had to our account. We can then push a button to
call one of those numbers and whitelist or blacklist them.

We also give the user the option to delete the account, which we'll cover in the Deleting a
subaccount recipe.

Allowing incoming phone calls
Part of the whole reason for setting up this system is to allow incoming calls.

This recipe will take an incoming call to the phone number your user has assigned to his/her
account and forward it to the phone number he/she registered with on the joining page.

If the user is away and can't answer the phone at that time, the system will ask the caller to
leave a message and e-mail the voicemail to the user.

We're also going to compare the number against our white and blacklists, which we created
in the previous recipe, and if the person is blacklisted, or if the call is after 5 p.m. and the
number is not whitelisted, we'll direct them straight to voicemail.

Getting ready
The complete source code for this recipe can be found in the Chapter9/Recipe5 folder in
the source code for this book.

Building Your Own PBX

198

How to do it...
How do we handle calls to our users' purchased phone numbers? This recipe will show you
how to make the /voice page actually do something handy.

Update index.php with the following content:

<?php
session_start();
include 'Services/Twilio.php';
require("system/jolt.php");
require("system/pdo.class.php");
require("system/functions.php");

$_GET['route'] = isset($_GET['route']) ? '/'.$_GET['route'] : '/';
$app = new Jolt('site',false);
$app->option('source', 'config.ini');
#$pdo = Db::singleton();
$mysiteURL = $app->option('site.url');

$app->condition('signed_in', function () use ($app) {
 $app->redirect($app->getBaseUri().'/login',!$app-
>store('user'));
});

$app->get('/login', function() use ($app){
 $app->render('login', array(),'layout');
});
$app->post('/login', function() use ($app){
 $sql = "SELECT * FROM `user` WHERE `email`='{$_POST['user']}' AND
`password`='{$_POST['pass']}'";
 $pdo = Db::singleton();
 $res = $pdo->query($sql);
 $user = $res->fetch();
 if(isset($user['ID'])){
 $_SESSION['uid'] = $user['ID'];
 $app->store('user',$user['ID']);
 $app->redirect($app->getBaseUri().'/home');
 }else{
 $app->redirect($app->getBaseUri().'/login');
 }
});
$app->get('/signup', function() use ($app){
 $app->render('register', array(),'layout');
});

Chapter 9

199

$app->post('/signup', function() use ($app){
 $client = new Services_Twilio($app->store('twilio.accountsid'),
$app->store('twilio.authtoken'));
 extract($_POST);
 $timestamp = strtotime($timestamp);
 $subaccount = $client->accounts->create(array(
 "FriendlyName" => $email
));
 $sid = $subaccount->sid;
 $token = $subaccount->auth_token;
 $sql = "INSERT INTO 'user' SET `name`='{$name}',`email`='{$email}',`
password`='{$password}',`phone_number`='{$phone_number}',`sid`='{$sid}
',`token`='{$token}',`status`=1";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $uid = $pdo->lastInsertId();
 $app->store('user',$uid);
 // log user in
 $app->redirect($app->getBaseUri().'/phone-number');
});
$app->get('/phone-number', function() use ($app){
 $app->condition('signed_in');
 $user = $app->store('user');
 $client = new Services_Twilio($user['sid'], $user['token']);
 $app->render('phone-number');
});
$app->post("search", function() use ($app){
 $app->condition('signed_in');
 $user = get_user($app->store('user'));
 $client = new Services_Twilio($user['sid'], $user['token']);
 $SearchParams = array();
 $SearchParams['InPostalCode'] = !empty($_POST['postal_code']) ?
trim($_POST['postal_code']) : '';
 $SearchParams['NearNumber'] = !empty($_POST['near_number']) ?
trim($_POST['near_number']) : '';
 $SearchParams['Contains'] = !empty($_POST['contains'])? trim($_
POST['contains']) : '' ;
 try {
 $numbers = $client->account->available_phone_numbers-
>getList('US', 'Local', $SearchParams);
 if(empty($numbers)) {
 $err = urlencode("We didn't find any phone numbers by that
search");
 $app->redirect($app->getBaseUri().'/phone-number?msg='.$err);
 exit(0);

Building Your Own PBX

200

 }
 } catch (Exception $e) {
 $err = urlencode("Error processing search: {$e->getMessage()}");
 $app->redirect($app->getBaseUri().'/phone-number?msg='.$err);
 exit(0);
 }
 $app->render('search',array('numbers'=>$numbers));
});
$app->post("buy", function() use ($app){
 $app->condition('signed_in');
 $user = get_user($app->store('user'));
 $client = new Services_Twilio($user['sid'], $user['token']);
 $PhoneNumber = $_POST['PhoneNumber'];
 try {
 $number = $client->account->incoming_phone_numbers->create(array(
 'PhoneNumber' => $PhoneNumber
));
 $phsid = $number->sid;
 if (!empty($phsid)){
 $sql = "INSERT INTO numbers (user_id,number,sid) VALUES('{$user[
'ID']}','{$PhoneNumber}','{$phsid}');";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $fid = $pdo->lastInsertId();
 $ret = editNumber($phsid,array(
 "FriendlyName"=>$PhoneNumber,
 "VoiceUrl" => $mysiteURL."/voice?id=".$fid,
 "VoiceMethod" => "POST",
),$user['sid'], $user['token']);
 }
 } catch (Exception $e) {
 $err = urlencode("Error purchasing number: {$e->getMessage()}");
 $app->redirect($app->getBaseUri().'/phone-number?msg='.$err);
 exit(0);
 }
 $msg = urlencode("Thank you for purchasing $PhoneNumber");
 header("Location: index.php?msg=$msg");
 $app->redirect($app->getBaseUri().'/home?msg='.$msg);
 exit(0);
});
$app->route('/voice', function() use ($app){
 header("Content-type: text/xml");
 $fid = $_GET['id'];
 $from = preg_replace("/[^0-9]/", "", $_POST['From']);

Chapter 9

201

 $pdo = Db::singleton();
 $sql = "SELECT * FROM numbers WHERE ID='{$fid}';";
 $res = $pdo->query($sql);
 $number = $res->fetch();
 $fromNumber = $number['number'];
 if($user = get_user($number['user_id'])){
 $_SESSION['uid'] = $user['ID'];
 $toNumber = $user['phone_number'];
 $name = $user['name'];
 $response = new Services_Twilio_Twiml();
 $response->dial($toNumber, array('timeout' => 5));
 $response->say("I'm sorry, $name is not available at this time.
Please leave a message after the tone.");
 $response->record(array(
 'transcribeCallback' => 'transcribe.
php?uid='.$user['ID'].'&From=' . $from,
 'transcribe' => 'true'
));
 print $response;
 exit;
 }

});
$app-> route('/transcribe', function() use ($app){
 header("Content-type: text/xml");
 $uid = $_GET['uid'];
 if($user = get_user($uid)){
 $filter = "!@#$^&%*()+=-[]\/{}|:<>?,.";
 $recording = preg_replace("/[$filter]/", "", $_
POST['RecordingUrl']);
 $transcript = preg_replace("/[$filter]/", "", $_
POST['TranscriptionText']);
 $from = preg_replace("/[^0-9]/", "", $_GET['From']);
 $subject = "You have a new voicemail transcription from " . $from;
 $body = "You received voicemail." .
 "\n\nHere is the recording: $recording" .
 "\n\nAnd here is the transcription:\n $transcript";
 mail($user['email'], $subject, $body);
 exit;
 }
});

$app->get('/logout', function() use ($app){
 $app->store('user',0);
 $app->redirect($app->getBaseUri().'/login');

Building Your Own PBX

202

});
$app->get('/home', function() use ($app){
 $app->condition('signed_in');
 $uid = $app->store('user');
 $user = get_user($uid);
 $client = new Services_Twilio($user['sid'], $user['token']);
 $app->render('dashboard',array(
 'user'=>$user,
 'client'=>$client
));
});
$app->get('/delete', function() use ($app){
 $app->condition('signed_in');
});
$app->get('/', function() use ($app){
 $app->render('home');
});
$app->listen();

How it works...
We've just added the /voice and /transcribe pages to our web app.

Now, whenever the user receives an incoming call on the number assigned to his/her
account, it will automatically forward the call to the registered phone number.

If the call times out, we prompt the caller to leave a message. This message then triggers
/transcribe that takes the recordings and e-mails it to the user, along with a transcription.

On top of this, we've also added a check to see if the caller is whitelisted, blacklisted, or
calling during office hours.

If the call is between 9 a.m. and 5 p.m. and the caller is neither whitelisted nor blacklisted,
the call goes through. If the call is between 5 p.m. and 9 a.m. and the caller is not whitelisted,
the call goes straight to voicemail, and if the caller is blacklisted, he/she gets sent straight to
voicemail regardless of the other conditions met.

Allowing outgoing phone calls
We've given users the ability to handle incoming calls. Now let's give them the ability to call
people back from their account.

In index.php, we displayed a link on each phone number that lets the user use the
"Click-to-Call" feature. Now, let's build up on this recipe.

Chapter 9

203

Getting ready
The complete source code for this recipe can be found in the Chapter9/Recipe6 folder in
the source code for this book.

How to do it...
Once we're finished, we'll be able to click any phone number and make an outgoing call.
This call will first call us and then the phone number we clicked on. Perform the following
step to do so.

Update index.php again with our new routes as follows:

<?php
session_start();
include 'Services/Twilio.php';
require("system/jolt.php");
require("system/pdo.class.php");
require("system/functions.php");

$_GET['route'] = isset($_GET['route']) ? '/'.$_GET['route'] : '/';
$app = new Jolt('site',false);
$app->option('source', 'config.ini');
#$pdo = Db::singleton();
$mysiteURL = $app->option('site.url');

$app->condition('signed_in', function () use ($app) {
 $app->redirect($app->getBaseUri().'/login',!$app-
>store('user'));
});

$app->get('/login', function() use ($app){
 $app->render('login', array(),'layout');
});
$app->post('/login', function() use ($app){
 $sql = "SELECT * FROM `user` WHERE `email`='{$_POST['user']}' AND
`password`='{$_POST['pass']}'";
 $pdo = Db::singleton();
 $res = $pdo->query($sql);
 $user = $res->fetch();
 if(isset($user['ID'])){
 $_SESSION['uid'] = $user['ID'];
 $app->store('user',$user['ID']);
 $app->redirect($app->getBaseUri().'/home');

Building Your Own PBX

204

 }else{
 $app->redirect($app->getBaseUri().'/login');
 }
});
$app->get('/signup', function() use ($app){
 $app->render('register', array(),'layout');
});
$app->post('/signup', function() use ($app){
 $client = new Services_Twilio($app->store('twilio.accountsid'),
$app->store('twilio.authtoken'));
 extract($_POST);
 $timestamp = strtotime($timestamp);
 $subaccount = $client->accounts->create(array(
 "FriendlyName" => $email
));
 $sid = $subaccount->sid;
 $token = $subaccount->auth_token;
 $sql = "INSERT INTO 'user' SET `name`='{$name}',`email`='{$email}',`
password`='{$password}',`phone_number`='{$phone_number}',`sid`='{$sid}
',`token`='{$token}',`status`=1";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $uid = $pdo->lastInsertId();
 $app->store('user',$uid);
 // log user in
 $app->redirect($app->getBaseUri().'/phone-number');
});
$app->get('/phone-number', function() use ($app){
 $app->condition('signed_in');
 $user = $app->store('user');
 $client = new Services_Twilio($user['sid'], $user['token']);
 $app->render('phone-number');
});

$app->post("search", function() use ($app){
 $app->condition('signed_in');
 $user = get_user($app->store('user'));
 $client = new Services_Twilio($user['sid'], $user['token']);
 $SearchParams = array();
 $SearchParams['InPostalCode'] = !empty($_POST['postal_code']) ?
trim($_POST['postal_code']) : '';
 $SearchParams['NearNumber'] = !empty($_POST['near_number']) ?
trim($_POST['near_number']) : '';
 $SearchParams['Contains'] = !empty($_POST['contains'])? trim($_
POST['contains']) : '' ;

Chapter 9

205

 try {
 $numbers = $client->account->available_phone_numbers-
>getList('US', 'Local', $SearchParams);
 if(empty($numbers)) {
 $err = urlencode("We didn't find any phone numbers by that
search");
 $app->redirect($app->getBaseUri().'/phone-number?msg='.$err);
 exit(0);
 }
 } catch (Exception $e) {
 $err = urlencode("Error processing search: {$e->getMessage()}");
 $app->redirect($app->getBaseUri().'/phone-number?msg='.$err);
 exit(0);
 }
 $app->render('search',array('numbers'=>$numbers));
});

$app->post("buy", function() use ($app){
 $app->condition('signed_in');
 $user = get_user($app->store('user'));
 $client = new Services_Twilio($user['sid'], $user['token']);
 $PhoneNumber = $_POST['PhoneNumber'];
 try {
 $number = $client->account->incoming_phone_numbers->create(array(
 'PhoneNumber' => $PhoneNumber
));
 $phsid = $number->sid;
 if (!empty($phsid)){
 $sql = "INSERT INTO numbers (user_id,number,sid) VALUES('{$user[
'ID']}','{$PhoneNumber}','{$phsid}');";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $fid = $pdo->lastInsertId();
 $ret = editNumber($phsid,array(
 "FriendlyName"=>$PhoneNumber,
 "VoiceUrl" => $mysiteURL."/voice?id=".$fid,
 "VoiceMethod" => "POST",
),$user['sid'], $user['token']);
 }
 } catch (Exception $e) {
 $err = urlencode("Error purchasing number: {$e->getMessage()}");
 $app->redirect($app->getBaseUri().'/phone-number?msg='.$err);
 exit(0);
 }

Building Your Own PBX

206

 $msg = urlencode("Thank you for purchasing $PhoneNumber");
 header("Location: index.php?msg=$msg");
 $app->redirect($app->getBaseUri().'/home?msg='.$msg);
 exit(0);
});
$app->route('/voice', function() use ($app){
 header("Content-type: text/xml");
 $fid = $_GET['id'];
 $from = preg_replace("/[^0-9]/", "", $_POST['From']);
 $pdo = Db::singleton();
 $sql = "SELECT * FROM numbers WHERE ID='{$fid}';";
 $res = $pdo->query($sql);
 $number = $res->fetch();
 $fromNumber = $number['number'];
 if($user = get_user($number['user_id'])){
 $_SESSION['uid'] = $user['ID'];
 $toNumber = $user['phone_number'];
 $name = $user['name'];
 $response = new Services_Twilio_Twiml();
 $response->dial($toNumber, array('timeout' => 5));
 $response->say("I'm sorry, $name is not available at this time.
Please leave a message after the tone.");
 $response->record(array(
 'transcribeCallback' => 'transcribe.
php?uid='.$user['ID'].'&From=' . $from,
 'transcribe' => 'true'
));
 print $response;
 exit;
 }

});

$app->route('/transcribe', function() use ($app){
 header("Content-type: text/xml");
 $uid = $_GET['uid'];
 if($user = get_user($uid)){
 $filter = "!@#$^&%*()+=-[]\/{}|:<>?,.";
 $recording = preg_replace("/[$filter]/", "", $_
POST['RecordingUrl']);
 $transcript = preg_replace("/[$filter]/", "", $_
POST['TranscriptionText']);
 $from = preg_replace("/[^0-9]/", "", $_GET['From']);
 $subject = "You have a new voicemail transcription from " . $from;
 $body = "You received voicemail." .

Chapter 9

207

 "\n\nHere is the recording: $recording" .
 "\n\nAnd here is the transcription:\n $transcript";
 mail($user['email'], $subject, $body);
 exit;
 }
});

$app->route('/call', function() use ($app){
 $app->condition('signed_in');
 $uid = $app->store('user');
 $user = get_user($uid);
 $client = new Services_Twilio($user['sid'], $user['token']);
 $pdo = Db::singleton();
 $sql = "SELECT * FROM numbers WHERE user_id='{$user['ID']}' LIMIT
1;";
 $res = $pdo->query($sql);
 $number = $res->fetch();
 $fromNumber = $number['number'];
 $toNumber = $user['phone_number'];
 $call = $client->account->calls->create($fromNumber, $toNumber, '/
callback?number=' . $_REQUEST['number']);

});
$app->route('/callback', function() use ($app){
 header("content-type: text/xml");
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
?>
<Response>
 <Say>A person at the number <?php echo $_REQUEST['number']?> is
calling</Say>
 <Dial><?php echo $_REQUEST['number']?></Dial>
</Response>
<?php
});
$app->get('/logout', function() use ($app){
 $app->store('user',0);
 $app->redirect($app->getBaseUri().'/login');
});
$app->get('/home', function() use ($app){
 $app->condition('signed_in');
 $uid = $app->store('user');
 $user = get_user($uid);
 $client = new Services_Twilio($user['sid'], $user['token']);
 $app->render('dashboard',array(

Building Your Own PBX

208

 'user'=>$user,
 'client'=>$client
));
});
$app->get('/delete', function() use ($app){
 $app->condition('signed_in');
});
$app->get('/', function() use ($app){
 $app->render('home');
});
$app->listen();

How it works...
In step 1, we updated index.php to include the /call and /callback requests.

The /call request handles all outgoing calls; it works by acting as a "Click-to-Call" feature,
like the one we built in Chapter 1, Into the Frying Pan, where the user clicks a phone number
and the system then dials the user's phone followed by the caller's phone.

Deleting a subaccount
Ok, your user has chosen to delete his account. That's fine; let's handle how to make
that work.

Getting ready
The complete source code for this recipe can be found in the Chapter9/Recipe7 folder in
the source code for this book.

How to do it...
Our final recipe will walk you through how to delete a user's account. This will be done by
updating the index.php file—for the last time—to the following content:

<?php
session_start();
include 'Services/Twilio.php';
require("system/jolt.php");
require("system/pdo.class.php");
require("system/functions.php");

$_GET['route'] = isset($_GET['route']) ? '/'.$_GET['route'] : '/';

Chapter 9

209

$app = new Jolt('site',false);
$app->option('source', 'config.ini');
#$pdo = Db::singleton();
$mysiteURL = $app->option('site.url');

$app->condition('signed_in', function () use ($app) {
 $app->redirect($app->getBaseUri().'/login',!$app-
>store('user'));
});

$app->get('/login', function() use ($app){
 $app->render('login', array(),'layout');
});
$app->post('/login', function() use ($app){
 $sql = "SELECT * FROM `user` WHERE `email`='{$_POST['user']}' AND
`password`='{$_POST['pass']}'";
 $pdo = Db::singleton();
 $res = $pdo->query($sql);
 $user = $res->fetch();
 if(isset($user['ID'])){
 $_SESSION['uid'] = $user['ID'];
 $app->store('user',$user['ID']);
 $app->redirect($app->getBaseUri().'/home');
 }else{
 $app->redirect($app->getBaseUri().'/login');
 }
});
$app->get('/signup', function() use ($app){
 $app->render('register', array(),'layout');
});
$app->post('/signup', function() use ($app){
 $client = new Services_Twilio($app->store('twilio.accountsid'),
$app->store('twilio.authtoken'));
 extract($_POST);
 $timestamp = strtotime($timestamp);
 $subaccount = $client->accounts->create(array(
 "FriendlyName" => $email
));
 $sid = $subaccount->sid;
 $token = $subaccount->auth_token;
 $sql = "INSERT INTO 'user' SET `name`='{$name}',`email`='{$email}',`
password`='{$password}',`phone_number`='{$phone_number}',`sid`='{$sid}
',`token`='{$token}',`status`=1";
 $pdo = Db::singleton();
 $pdo->exec($sql);

Building Your Own PBX

210

 $uid = $pdo->lastInsertId();
 $app->store('user',$uid);
 // log user in
 $app->redirect($app->getBaseUri().'/phone-number');
});
$app->get('/phone-number', function() use ($app){
 $app->condition('signed_in');
 $user = $app->store('user');
 $client = new Services_Twilio($user['sid'], $user['token']);
 $app->render('phone-number');
});

$app->post("search", function() use ($app){
 $app->condition('signed_in');
 $user = get_user($app->store('user'));
 $client = new Services_Twilio($user['sid'], $user['token']);
 $SearchParams = array();
 $SearchParams['InPostalCode'] = !empty($_POST['postal_code']) ?
trim($_POST['postal_code']) : '';
 $SearchParams['NearNumber'] = !empty($_POST['near_number']) ?
trim($_POST['near_number']) : '';
 $SearchParams['Contains'] = !empty($_POST['contains'])? trim($_
POST['contains']) : '' ;
 try {
 $numbers = $client->account->available_phone_numbers-
>getList('US', 'Local', $SearchParams);
 if(empty($numbers)) {
 $err = urlencode("We didn't find any phone numbers by that
search");
 $app->redirect($app->getBaseUri().'/phone-number?msg='.$err);
 exit(0);
 }
 } catch (Exception $e) {
 $err = urlencode("Error processing search: {$e->getMessage()}");
 $app->redirect($app->getBaseUri().'/phone-number?msg='.$err);
 exit(0);
 }
 $app->render('search',array('numbers'=>$numbers));
});

$app->post("buy", function() use ($app){
 $app->condition('signed_in');
 $user = get_user($app->store('user'));
 $client = new Services_Twilio($user['sid'], $user['token']);
 $PhoneNumber = $_POST['PhoneNumber'];

Chapter 9

211

 try {
 $number = $client->account->incoming_phone_numbers->create(array(
 'PhoneNumber' => $PhoneNumber
));
 $phsid = $number->sid;
 if (!empty($phsid)){
 $sql = "INSERT INTO numbers (user_id,number,sid) VALUES('{$user[
'ID']}','{$PhoneNumber}','{$phsid}');";
 $pdo = Db::singleton();
 $pdo->exec($sql);
 $fid = $pdo->lastInsertId();
 $ret = editNumber($phsid,array(
 "FriendlyName"=>$PhoneNumber,
 "VoiceUrl" => $mysiteURL."/voice?id=".$fid,
 "VoiceMethod" => "POST",
),$user['sid'], $user['token']);
 }
 } catch (Exception $e) {
 $err = urlencode("Error purchasing number: {$e->getMessage()}");
 $app->redirect($app->getBaseUri().'/phone-number?msg='.$err);
 exit(0);
 }
 $msg = urlencode("Thank you for purchasing $PhoneNumber");
 header("Location: index.php?msg=$msg");
 $app->redirect($app->getBaseUri().'/home?msg='.$msg);
 exit(0);
});

$app->route('/voice', function() use ($app){
 header("Content-type: text/xml");
 $fid = $_GET['id'];
 $from = preg_replace("/[^0-9]/", "", $_POST['From']);
 $pdo = Db::singleton();
 $sql = "SELECT * FROM numbers WHERE ID='{$fid}';";
 $res = $pdo->query($sql);
 $number = $res->fetch();
 $fromNumber = $number['number'];
 if($user = get_user($number['user_id'])){
 $_SESSION['uid'] = $user['ID'];
 $toNumber = $user['phone_number'];
 $name = $user['name'];
 $response = new Services_Twilio_Twiml();
 $response->dial($toNumber, array('timeout' => 5));

Building Your Own PBX

212

 $response->say("I'm sorry, $name is not available at this time.
Please leave a message after the tone.");
 $response->record(array(
 'transcribeCallback' => 'transcribe.
php?uid='.$user['ID'].'&From=' . $from,
 'transcribe' => 'true'
));
 print $response;
 exit;
 }

});

$app->route('/transcribe', function() use ($app){
 header("Content-type: text/xml");
 $uid = $_GET['uid'];
 if($user = get_user($uid)){
 $filter = "!@#$^&%*()+=-[]\/{}|:<>?,.";
 $recording = preg_replace("/[$filter]/", "", $_
POST['RecordingUrl']);
 $transcript = preg_replace("/[$filter]/", "", $_
POST['TranscriptionText']);
 $from = preg_replace("/[^0-9]/", "", $_GET['From']);
 $subject = "You have a new voicemail transcription from " . $from;
 $body = "You received voicemail." .
 "\n\nHere is the recording: $recording" .
 "\n\nAnd here is the transcription:\n $transcript";
 mail($user['email'], $subject, $body);
 exit;
 }
});

$app->route('/call', function() use ($app){
 $app->condition('signed_in');
 $uid = $app->store('user');
 $user = get_user($uid);
 $client = new Services_Twilio($user['sid'], $user['token']);
 $pdo = Db::singleton();
 $sql = "SELECT * FROM numbers WHERE user_id='{$user['ID']}' LIMIT
1;";
 $res = $pdo->query($sql);
 $number = $res->fetch();
 $fromNumber = $number['number'];
 $toNumber = $user['phone_number'];

Chapter 9

213

 $call = $client->account->calls->create($fromNumber, $toNumber, '/
callback?number=' . $_REQUEST['number']);

});
$app->route('/callback', function() use ($app){
 header("content-type: text/xml");
 echo "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
?>
<Response>
 <Say>A person at the number <?php echo $_REQUEST['number']?> is
calling</Say>
 <Dial><?php echo $_REQUEST['number']?></Dial>
</Response>
<?php
});
$app->get('/logout', function() use ($app){
 $app->store('user',0);
 $app->redirect($app->getBaseUri().'/login');
});
$app->get('/home', function() use ($app){
 $app->condition('signed_in');
 $uid = $app->store('user');
 $user = get_user($uid);
 $client = new Services_Twilio($user['sid'], $user['token']);
 $app->render('dashboard',array(
 'user'=>$user,
 'client'=>$client
));
});
$app->get('/delete', function() use ($app){
 $app->condition('signed_in');
 $uid = $app->store('user');
 $user = get_user($uid);
 $client = new Services_Twilio($user['sid'], $user['token']);
 $pdo = Db::singleton();
 $sql = "SELECT * FROM numbers WHERE user_id='{$user['ID']}';";
 $res = $pdo->query($sql);
 while($number = $res->fetch()){
 releaseNumber($user['sid'],$user['token'],$number['sid'])
 }
 $account = $client->accounts->get($user['sid']);
 $account->update(array(
 "Status" => "closed"
));

Building Your Own PBX

214

 $sql = "DELETE FROM numbers WHERE user_id='{$user['ID']}';";
 $pdo->exec($sql);
 $sql = "DELETE FROM user WHERE ID='{$user['ID']}';";
 $pdo->exec($sql);
 $app->store('user',0);
 $app->redirect($app->getBaseUri().'/login');
});
$app->get('/', function() use ($app){
 $app->render('home');
});
$app->listen();

How it works...
In this recipe, we updated index.php to add a new route called /delete.

This new route performs the following operations:

 f First, it releases the phone numbers the user may have registered

 f Second, it closes the user's subaccount

 f Third, it deletes his/her numbers from our database

 f Finally, it deletes the user's record from our database

This function is pretty powerful, so it only works for the user currently logged in.

10
Digging into OpenVBX

In this chapter, you will learn the following operations:

 f Building a call log plugin

 f Building a searchable company directory

 f Collecting Stripe payments

 f Tracking orders

 f Building a caller ID routing plugin

 f Testing call flows

Introduction
In this chapter, we will be digging into OpenVBX.

OpenVBX is an open source VBX system built by Twilio that you can use to quickly set up
your calls.

I like to use OpenVBX for various projects because it allows for a rapid setup and your users
can use it to handle incoming calls, outgoing calls, and messages. This has an easy-to-learn
drag-and-drop call flow system.

We'll be building plugins to extend our OpenVBX installation so that you can make it more
useful to your users.

By the end of the chapter, you'll have a nice call log and a searchable company directory. You
will be able to collect Stripe payments over the phone, have a handy order status tracking
system integrated into your site, have a caller ID, and finally, be able to test your call flows.

Flows are what the call workflows are known as; they can be set up as easily as dragging a
box onto action.

Digging into OpenVBX

216

As part of building our plugins, we'll also be building what OpenVBX refers to as applets,
which are the actionable items we can drop into a call flow.

The file structures of plugins are such that, inside the plugins folder, you'll create a folder for
your new plugin. Inside that folder you will create a plugin.json file that contains metadata
about your plugin.

If your plugin uses applets, which are the boxes you can use for adding a plugin into a call
flow, you will also create an applets folder inside your plugin folder; then inside that folder
you will create a folder with the name of the applet.

Inside each applet folder, you will have a file called applet.json, a file called ui.php
that handles the actual UI of the applet, and finally a file called twiml.php that handles
the actual call instructions and tells the applet what it needs to do when activated.

This way, you could have multiple applets for one plugin, if you want to.

Go ahead and install OpenVBX so you can play with this cool system.

Building a call log plugin
This is a basic plugin that is a good starting point for you.

We're going to build a call log that will add a menu option to the side menu and, when clicked,
will show us recent calls.

Getting ready
The complete source code for this recipe can be found in Chapter10/Recipe1 in the source
code for this book.

How to do it…
We're going to build a basic call logging system. This will give us a call log on the menu of our
OpenVBX install, which we can then use to view account usage. The following are the steps
you will need to perform:

1. Create a folder in your plugins folder, and name it calllog.

2. Create a file named plugin.json and write in the following code:
{
 "name" : "Call Log",
 "description" : "This displays a list of all the calls and sms
that have been made or received.",
 "links" : [{
 "menu" : "Call Log",

Chapter 10

217

 "url" : "call_log",
 "script" : "call_log.php",
 "label" : "Call Log"
 }]
}

3. Create a file named call_log.php and write in the following code:
<?php

classcall_log{
 private $limit;
 private $account;
 public function __construct($limit = 20){
 $this->limit = $limit;
 $this->account = OpenVBX::getAccount();
 }
 public function list_calls(){
 $calls = $this->account->calls->getPage(0, $this->limit,
array())->getItems();
?>
 <div class="vbx-plugin">
 <h3>Call Log</h3>
 <p>Showing the last <?= $this->limit; ?> calls.</p>
 <table>
 <thead>
 <tr>
 <th>Number</th>
 <th>Start Time</th>
 <th>End Time</th>
 <th>Duration</th>
 <th>Called</th>
 <th>Status</th>
 </tr>
 </thead>
 <tbody>
 <?php foreach($calls as $call){ ?>
 <tr>
 <td><?= $this->who_called($call->from); ?></td>
 <td><?= $this->nice_date($call->start_time); ?></td>
 <td><?= $this->nice_date($call->end_time); ?></td>
 <td><?=gmdate("H:i:s",$call->duration); ?></td>
 <td><?= $this->who_called($call->to); ?></td>
 <td><?= $this->be_nice($call->status); ?></td>
 </tr>

Digging into OpenVBX

218

 <?php } ?>
 </tbody>
 </table>
 </div>
<?php
 }
 public function be_nice($status, $sep = '-') {
 returnucwords(str_replace($sep, ' ', $status));
 }
 public function who_called($number) {
 if (preg_match('|^client:|', $number)){
 $user_id = str_replace('client:', '', $number);
 $user = VBX_User::get(array('id' => $user_id));
 $ret = $user->first_name.' '.$user->last_name.' (client)';
 }else{
 $ret = format_phone($number);
 }
 return $ret;
 }
 public function nice_date($date){
 $timestamp = strtotime($date);
 return date('M j, Y', $timestamp).'
'.date('H:i:s T',
$timestamp);
 }
}

$log = new call_log(50);
$log->list_calls();

How it works…
The call log is pretty simple but it works nicely.

The plugin used adds a menu item called Call Log; when the user clicks on that menu item, it
will display a table containing the last fifty calls that their Twilio account has made.

Building a searchable company directory
I have received requests from people wanting to add a searchable company directory to their
systems. For this, let's create a plugin that will come in handy. This plugin will also introduce
you to setting up applets.

Chapter 10

219

Getting ready
The complete source code for this recipe can be found at Chapter10/Recipe2 in the source
code for this book.

How to do it…
The following plugin is going to give us a searchable user directory. Perform the following
steps to build the plugin:

1. Create a folder in your plugins folder, and name it directory.

2. Create a file named plugin.json and write in the following code:
{
 "name" : "Directory",
 "description" : "Searchable directory of Users.",
}

3. Inside the directory folder, create a folder named applets.

4. Upload a new file called directory.class.php and write in the following code:
<?php

class DirectorySearch{
 public function __construct(){
 }

 public function connect($response, $user){
 $name = $user->first_name . " " . $user->last_name;
 $device = $_SESSION[SESSION_KEY]['number']++;
 if(isset($user->devices[$device])){
 if(!$user->devices[$device]->is_active){
 return connect($response, $user);
 }
 $dial = $response->addDial(array('action' =>current_url()));
 $dial->addNumber($user->devices[$device]->value, array('url'
=>site_url('twiml/whisper?name='.urlencode($name))));
 } else {
 $response->append(AudioSpeechPickerWidget::getVerbForValue($us
er->voicemail, new Say("Please leave a message.")));
 $response->addRecord(array(
 'transcribe' => 'true',
 'transcribeCallback' =>site_url('twiml/transcribe')));
 }
 return $response;

Digging into OpenVBX

220

 }
 public function promptMenu($response, $users){
 $gather = $response->addGather();
 foreach($users as $index => $user){
 $pos = $index + 1;
 $gather->addSay("Dial $pos for {$user->first_name} {$user-
>last_name}");
 }
 return $response;
 }
 public function searchPrompt($response){
 unset($_SESSION[SESSION_KEY]);
 $this->addMessage($response->addGather(), 'searchPrompt',
'Please enter the first few letters of the name, followed by the
pound sign.');
 return $response;
 }
 function errorResponse($response){
 return $this->addMessage($response, 'errorMessage', 'Sorry, an
error occurred.');
 }
 public function addMessage($response, $name, $fallback){
 $message = AppletInstance::getAudioSpeechPickerValue($name);
 $response->append(AudioSpeechPickerWidget::getVerbForValue($me
ssage, new Say($fallback)));
 return $response;
 }
 public function getMatches($digits){
 $indexes = array();
 $matches = array();
 $users = OpenVBX::getUsers(array('is_active' => 1));
 foreach($users as $user) {
 $fname = $user->values['first_name'];
 $lname = $user->values['last_name'];
 $fdigits = $this->stringToDigits($fname);
 $ldigits = $this->stringToDigits($lname);
 if(stristr($fdigits,$digits) || stristr($ldigits,$digits))
{
 $matches[] = $user;
 }
 }
 return $matches;
 }
 private function stringToDigits($str) {
 $str = strtolower($str);

Chapter 10

221

 $from = 'abcdefghijklmnopqrstuvwxyz';
 $to = '22233344455566677778889999';
 return preg_replace('/[^0-9]/', '', strtr($str, $from, $to));
 }
}

5. Inside the applets folder, create a folder and name it directory.

6. Create a file named applet.json and write in the following code:
{
 "name" : "Directory Search",
 "description" : "Search Directory of users",
 "type" : "voice"
}

7. Create a file named ui.php and write in the following code:
<div class="vbx-applet">
<h2>Directory Search</h2>
<p>Callers can search for users by dialing a few letters of the
user's first or last name. They can press pound when done, or
simply wait for 5 seconds. </p>
<h3>Search Prompt</h3>
<p>When the caller reaches this menu they will hear this prompt:</
p>
<?=AppletUI::audioSpeechPicker('searchMenu'); ?>
<h3>Menu Prompt</h3>
<p>The caller can select a user from the menu, or dial 0 to try
again. Before the user menu is played, play this prompt:</p>
<?=AppletUI::audioSpeechPicker('dirMenu'); ?>
<h3>No Matches</h3>
<p>Select a message to play when no users are found, before the
process is restarted.</p>
<?=AppletUI::audioSpeechPicker('nomatchMessage'); ?>
<h3>Restart Search</h3>
<p>The caller dialed 0 to restart the search, customize this
message.</p>
<?=AppletUI::audioSpeechPicker('restartMessage'); ?>
<h3>Invalid Selection</h3>
<p>Customize a specific message about the invalid selection.</p>
<?=AppletUI::audioSpeechPicker('invalidMessage'); ?>
<h3>Error Message</h3>
<p>Pick a message to notify the caller an error occurred before
the process is restarted.</p>
<?=AppletUI::audioSpeechPicker('errorMessage'); ?>
</div>

Digging into OpenVBX

222

8. Upload a file called twiml.php, bearing the following code:
<?php
require_once(dirname(dirname(dirname(__FILE__))) . '/directory.
class.php');
include_once(APPPATH.'models/vbx_device.php');
define('SESSION_KEY', AppletInstance::getInstanceId());
session_start();

$directory = new DirectorySearch();

if(isset($_SESSION[SESSION_KEY]['user'])){
 $user = unserialize($_SESSION[SESSION_KEY]['user']);
 if(isset($_REQUEST['RecordingUrl'])){
 OpenVBX::addVoiceMessage(
 $user,
 $_REQUEST['CallGuid'],
 $_REQUEST['Caller'],
 $_REQUEST['Called'],
 $_REQUEST['RecordingUrl'],
 $_REQUEST['Duration']);

 $response = new Response();
 $response->addHangup();
 $response->Respond();
 return;
 } elseif(isset($_REQUEST['DialStatus']) OR isset($_
REQUEST['DialCallStatus'])) {
 if(!isset($_REQUEST['DialStatus'])){
 $_REQUEST['DialStatus'] = $_REQUEST['DialCallStatus'];
 }
 if('answered' == $_REQUEST['DialStatus']){
 $response = new Response();
 $response->addHangup();
 $response->Respond();
 return;
 }
 return $directory->connect(new Response(), $user)->Respond();
 }
 return $directory->searchPrompt($directory->errorResponse(new
Response()))->Respond();
}
if(isset($_SESSION[SESSION_KEY]['users'])) {
 $users = unserialize($_SESSION[SESSION_KEY]['users']);
 $index = $_REQUEST['Digits'];

Chapter 10

223

 if("0" == $index){
 return $directory->searchPrompt($directory->addMessage(new
Response(), 'restartMessage', 'Starting over.'))->Respond();
 } elseif(!isset($users[$index - 1])){
 return $directory->promptMenu($directory->addMessage(new
Response(), 'invalidMessage', 'Not a valid selection.'), $users)-
>Respond();
 }
 unset($_SESSION[SESSION_KEY]['users']);
 $user = $users[$index - 1];
 $_SESSION[SESSION_KEY]['user'] = serialize($user);
 $_SESSION[SESSION_KEY]['number'] = 0;
 $response = new Response();
 $response->addSay("Connecting you to {$user->first_name} {$user-
>last_name}");
 return $directory->connect($response, $user)->Respond();
}
if(isset($_REQUEST['Digits'])){
 $users = $directory->getMatches($_REQUEST['Digits']);
 if(0 == count($users)){
 return $directory->searchPrompt($directory->addMessage(new
Response(), 'nomatchMessage', 'Sorry, no matches found.'))-
>Respond();
 }
 $_SESSION[SESSION_KEY]['users'] = serialize($users);
 return $directory->promptMenu($directory->addMessage(new
Response(), 'menuPrompt', 'Please select a user, or press 0 to
search again.'), $users)->Respond();
}
return $directory->searchPrompt(new Response())->Respond();

How it works…
In step 1, we created a folder called directory. In step 2, we created our plugin.json file.

Step 3 saw us upload directory.class.php, the actual brain of our plugin.

In steps 4 and 5, we created an applets folder and then a folder called directory inside it.
In step 6, we created applet.json.

Finally in steps 7 and 8, we created our ui.php and twiml.php files that tell the plugin's
applet how to look and act when used in a call flow.

When the user opens up OpenVBX, they can choose an applet that can be used in a
call flow. Choosing Directory Search will present them with a box to add actions; this
is defined in ui.php.

Digging into OpenVBX

224

When a call is made and the directory is triggered, then we use twiml.php to tell the system
what to do. In this case, we prompt the system to search for any user who matches the digits
we enter. So, typing 787 will find a match for Stringer and will attempt to call me.

You may notice that the stringToDigits function we originally used in our company
directory has returned. That's because this is a perfect example of matching a name
based on phone digits.

Collecting Stripe payments
At some point in most projects, you will want a way to collect payments. This recipe will show
you how to set up payments via Stripe and give your users a set of prompts where they can
enter their credit card information in order to conduct the payment.

Getting ready
The complete source code for this recipe can be found at Chapter10/Recipe3 in the source
code for this book.

How to do it…
We're going to build a plugin that will let users make stripe payments over the phone. Perform
the following steps to do so:

1. Download the latest version of the Stripe API for PHP from https://code.stripe.
com/stripe-php-latest.zip.

2. Create a folder in your plugins/ folder of your OpenVBX installation, name it
stripe, and upload the stripe-php folder.

3. Upload a file on your server called plugin.json with the following content:
{
 "name" : "Stripe",
 "description" : "Take payments over the phone using stripe.com",
 "links" : [{
 "menu" : "Stripe",
 "url" : "stripe",
 "script" : "stripe.php",
 "label" : "Settings"
 }]
}

Chapter 10

225

4. Upload a file on your server called script.js with the following content:
$(function() {
 $('.vbx-stripe :checkbox').click(function() {
 $('.vbx-stripe form p').eq(5).slideToggle();
 });
 if(!$('.vbx-stripe :checked').length)
 $('.vbx-stripe form p').eq(5).hide();
});

5. Upload a file on your server called stripe.php with the following content:
<?php
if(count($_POST)){
PluginData::set('settings', array(
 'api_key' => $_POST['api_key'],
 'card_prompt' => $_POST['card_prompt'],
 'month_prompt' => $_POST['month_prompt'],
 'year_prompt' => $_POST['year_prompt'],
 'require_cvc' =>isset($_POST['require_cvc']),
 'cvc_prompt' => $_POST['cvc_prompt']
));
}
$settings = PluginData::get('settings', array(
 'api_key' => null,
 'card_prompt' => "Please enter your credit card number followed
by the pound sign.",
 'month_prompt' => "Please enter the month of the card's
expiration date followed by the pound sign.",
 'year_prompt' => "Please enter the year of the expiration date
followed by the pound sign.",
 'require_cvc' => true,
 'cvc_prompt' => "Please enter the card's security code followed
by the pound sign."
));
OpenVBX::addJS('script.js');
?>
<div class="vbx-content-main">
<div class="vbx-content-menu vbx-content-menu-top">
<h2 class="vbx-content-heading">Stripe Settings</h2>
</div>
<div class="vbx-table-section vbx-stripe">
<form method="post" action="">
<fieldset class="vbx-input-container">
<p>
<label class="field-label">API Key

Digging into OpenVBX

226

<input type="password" name="api_key" class="medium" value="<?=
htmlentities($settings->api_key); ?>" />
</label>
</p>
<p>Please enter what you want to say to your customer as they fill
out your order form over the phone.</p>
<p>
<label class="field-label">Credit card prompt

<textarea rows="10" cols="100" name="card_prompt"
class="medium"><?= htmlentities($settings->card_prompt); ?></
textarea>
</label>
</p>
<p>
<label class="field-label">Expiration month prompt

<textarea rows="10" cols="100" name="month_prompt"
class="medium"><?= htmlentities($settings->month_prompt); ?></
textarea>
</label>
</p>
<p>
<label class="field-label">Expiration year prompt

<textarea rows="10" cols="100" name="year_prompt"
class="medium"><?= htmlentities($settings->year_prompt); ?></
textarea>
</label>
</p>
<p>
<label class="field-label">
<input type="checkbox" name="require_cvc" <?= $settings->require_
cvc ? ' checked="checked"' : ''; ?> /> Require CVC
</label>
</p>
<p>
<label class="field-label">Card CVC prompt

<textarea rows="10" cols="100" name="cvc_prompt"
class="medium"><?= htmlentities($settings->cvc_prompt); ?></
textarea>
</label>
</p>
<p><button type="submit" class="submit-button">Save</
button></p>
</fieldset>
</form>
</div>
</div>

Chapter 10

227

6. In your stripe folder, create a folder and name it applets.

7. In the applets folder, create another folder and name it stripe.

8. In the stripe folder, create an applet.json file with the following content:
{
 "name" : "Payment",
 "sms_name" : "Payment",
 "voice_title" : "Payment",
 "sms_title" : "Payment",
 "description" : "Take a credit card payment.",
 "type" : "voice"
}

9. Create a file named ui.php and write in the following code:
<?php
 $settings = PluginData::get('settings');
 if(is_object($settings)){
 $settings = get_object_vars($settings);
 }
?>
<div class="vbx-applet">
<?php if(empty($settings) || empty($settings['api_key'])){ ?>
 <div class="vbx-full-pane">
 <h3>Please set your Stripe.com settings first.</h3>
 </div>
<?php }else{ ?>
 <div class="vbx-full-pane">
 <h3>Amount to charge in cents?</h3>
 <p>How much money in cents to charge the card <small>($5.00
would be 500 cents)</small>.</p>
 <fieldset class="vbx-input-container">
 <input type="text" name="amount" class="medium" value="<?php
echo AppletInstance::getValue('amount', 50); ?>" />
 </fieldset>
 <h3>What they are paying for?</h3>
 <fieldset class="vbx-input-container">
 <input type="text" name="description" class="medium"
value="<?php echo AppletInstance::getValue('description'); ?>" />
 </fieldset>
 </div>
 <h2>What to do after the payment</h2>
 <div class="vbx-full-pane">
 <?php echo AppletUI::DropZone('success'); ?>
 </div>
 <h2>If the payment fails</h2>

Digging into OpenVBX

228

 <div class="vbx-full-pane">
 <?php echo AppletUI::DropZone('fail'); ?>
 </div>
<?php } ?>
</div>

10. Lastly, create a file and name it twiml.php, containing the following code:
<?php
$const = array();
$const['STRIPE_ACTION'] = 'stripeAction';
$const['STRIPE_COOKIE'] = 'payment-' . AppletInstance::getInstanc
eId();
$const['GATHER_CARD'] = 'GatherCard';
$const['GATHER_MONTH'] = 'GatherMonth';
$const['GATHER_YEAR'] = 'GatherYear';
$const['GATHER_CVC'] = 'GatherCvc';
$const['SEND_PAYMENT'] = 'SendPayment';
foreach($const as $k=>$v){
 define($k,$v);
}

$response = new TwimlResponse;

$state = array(
 STRIPE_ACTION => GATHER_CARD,
 'card' => array()
);

$ci =&get_instance();
$settings = PluginData::get('settings');
$amount = AppletInstance::getValue('amount');
$description = AppletInstance::getValue('description');
$digits = clean_digits($ci->input->get_post('Digits'));
$finishOnKey = '#';
$timeout = 15;

$card_errors = array(
 'invalid_number' => GATHER_CARD,
 'incorrect_number' => GATHER_CARD,
 'invalid_expiry_month' => GATHER_MONTH,
 'invalid_expiry_year' => GATHER_YEAR,
 'expired_card' => GATHER_CARD,
 'invalid_cvc' => GATHER_CVC,
 'incorrect_cvc' => GATHER_CVC

Chapter 10

229

);

if(is_object($settings)) $settings = get_object_vars($settings);

if(isset($_COOKIE[STRIPE_COOKIE])) {
 $state = json_decode(str_replace(', $Version=0', '', $_
COOKIE[STRIPE_COOKIE]), true);
 if(is_object($state)) $state = get_object_vars($state);
}

if($digits !== false) {
 switch($state[STRIPE_ACTION]) {
 case GATHER_CARD:
 $state['card']['number'] = $digits;
 $state[STRIPE_ACTION] = GATHER_MONTH;
 break;
 case GATHER_MONTH:
 $state['card']['exp_month'] = $digits;
 $state[STRIPE_ACTION] = GATHER_YEAR;
 break;
 case GATHER_YEAR:
 $state['card']['exp_year'] = $digits;
 $state[STRIPE_ACTION] = $settings['require_cvc'] ? GATHER_
CVC : SEND_PAYMENT;
 break;
 case GATHER_CVC:
 $state['card']['cvc'] = $digits;
 $state[STRIPE_ACTION] = SEND_PAYMENT;
 break;
 }
}
switch($state[STRIPE_ACTION]) {
 case GATHER_CARD:
 default:
 $gather = $response->gather(compact('finishOnKey',
'timeout'));
 $gather->addSay($settings['card_prompt']);
 break;
 case GATHER_MONTH:
 $gather = $response->gather(compact('finishOnKey',
'timeout'));
 $gather->addSay($settings['month_prompt']);
 break;
 case GATHER_YEAR:

Digging into OpenVBX

230

 $gather = $response->gather(compact('finishOnKey',
'timeout'));
 $gather->addSay($settings['year_prompt']);
 break;
 case GATHER_CVC:
 $gather = $response->gather(compact('finishOnKey',
'timeout'));
 $gather->addSay($settings['cvc_prompt']);
 break;
 case SEND_PAYMENT:
 require_once(dirname(dirname(dirname(__FILE__))) . '/stripe-
php/lib/Stripe.php');
 Stripe::setApiKey($settings['api_key']);
 try {
 $charge = Stripe_Charge::create(array(
 'card' => $state['card'],
 'amount' => $amount,
 'currency' => 'usd',
 'description' => $description
));
 if($charge->paid && true === $charge->paid) {
 setcookie(STRIPE_COOKIE);
 $next = AppletInstance::getDropZoneUrl('success');
 if(!empty($next)) $response->redirect($next);
 $response->respond();
 die;
 }
 }catch(Exception $e) {
 $error = $e->getCode();
 $response->addSay($e->getMessage());
 if(array_key_exists($error, $card_errors)) {
 $state[STRIPE_ACTION] = $card_errors[$error];
 $response->redirect();
 }else {
 setcookie(STRIPE_COOKIE);
 $next = AppletInstance::getDropZoneUrl('fail');
 if(!empty($next)) $response->redirect($next);
 $response->respond();
 die;
 }
 }
}
setcookie(STRIPE_COOKIE, json_encode($state), time() + (5 * 60));
$response->respond();

Chapter 10

231

How it works…
In step 1, we downloaded the Stripe API library for PHP.

In step 2, we created a folder called stripe; then, in step 3, we created our plugin.json file.

In steps 4 and 5, we created script.js and stripe.php. This lets us set up our initial
Stripe account information.

In steps 6 and 7, we created an applets folder and then a folder called stripe inside the
applets folder. Then, in step 8, we created applet.json.

Finally, in steps 9 and 10, we created our ui.php and twiml.php files. These files tell the
plugin's applet how to look and act when used in a call flow.

In our Settings menu, we have the ability to enter in our Stripe data.

When we add Stripe to our call flows, we have the ability to enter in a product or service name
and how much to charge for it.

Now, when someone calls into a call flow that has Stripe added to it, they will get a set of
prompts to purchase an item.

First, they will enter their credit card number, their cards' expiry month, and the expiry year;
then it will prompt for the caller to enter his/her CVC number.

Finally, the plugin will send the information to Stripe and process the payment. If it succeeds,
they will get a success message.

A good example of this would be to configure the work flow so that each menu option or
extension triggers the purchase of a different product or service.

Tracking orders
Yes, this is another order status tracking recipe. But this one will demonstrate how to use it
inside OpenVBX.

This order tracker will let us create a page where you can enter in orders and their statuses
and also incorporate the tracking into call flows.

For example, if we were setting up an IVR-type system, pressing 2 might load the order
tracking code and prompt the user to enter in their order ID.

Digging into OpenVBX

232

Getting ready
The complete source code for this recipe can be found at Chapter10/Recipe4 in the source
code for this book.

How to do it…
Let's build an order tracking system into our OpenVBX plugin now. We're going to set up an
interface to store order IDs and statuses; then we'll perform a look-up of those orders when
people call in. Perform the following steps to do so:

1. Create a folder in your plugins folder and name it orders.

2. Create a file and name it plugin.json, containing the following code:
{
 "name" : "Orders",
 "description" : "Allows order tracking over the phone",
 "links" : [{
 "menu" : "Order Tracker",
 "url" : "orders",
 "script" : "orders.php",
 "label" : "Orders"
 }]
}

3. Upload a file called orders.php, bearing the following code:
<?php
if(count($_POST)){
 foreach($_POST['keys'] as $k=>$v){
 if(empty($v)){
 unset($_POST['keys'][$k]);
 unset($_POST['status'][$k]);
 }
 }
 PluginData::set('orders', array(
 'keys' => $_POST['keys'],
 'status' => $_POST['status'],
));
}
$settings = PluginData::get('orders', array(
 'keys' => array(),
 'status' => array(),
));
$statusArray = array(

Chapter 10

233

 'shipped'=>'Shipped',
 'fullfillment'=>'Sent to Fullfillment',
 'processing'=>'Processing'
);
OpenVBX::addJS('script.js');
?>
<div class="vbx-plugin orders-applet">
<form method="post">
 <h2>Order Tracker</h2>
 <p>Enter an order ID, without spaces. For example, <code>1234</
code> instead of <code>123 4</code>.</p>
 <table class="vbx-orders-grid options-table">
 <thead>
 <tr>
 <td>Order ID</td>
 <td>Status</td>
 <td>Actions</td>
 </tr>
 </thead>
 <tbody>
 <?php foreach($settings->keys as $i=>$key){ ?>
 <tr>
 <td>
 <fieldset class="vbx-input-container">
 <input class="keypress" type="text" name="keys[]"
value="<?php echo $key ?>" autocomplete="off" />
 </fieldset>
 </td>
<td>
 <select name="status[]">
<?php
 foreach($statusArray as $k=>$v){
 $sel = '';
 if($settings->status[$i] == $k) $sel = 'SELECTED';
?>
 <option value="<?=$k?>" <?=$sel?>><?=$v?></option>
<?php
 }
?>
 </select>
 </td>
 <td>
 <span
class="replace">Update<a href="" class="remove
action">Remove

Digging into OpenVBX

234

 </td>
 </tr>
 <?php } ?>
 </tbody>
 <tfoot>
 <tr>
 <td>
 <fieldset class="vbx-input-container">
 <input class="keypress" type="text" name="keys[]"
value="" autocomplete="off" />
 </fieldset>
 </td>
 <td>
 <select name="status[]">
<?php
 foreach($statusArray as $k=>$v){
 $sel = '';

?>
 <option value="<?=$k?>" <?=$sel?>><?=$v?></option>
<?php
 }
?>
 </select>
 </td>
 <td>
 <span
class="replace">Update<a href="" class="remove
action">Remove
 </td>
 </tr>
 </tfoot>
 </table><!-- .vbx-orders-grid -->
<button type="submit">Save Orders</button>
</form>
</div><!-- .vbx-applet -->

4. Upload a file called script.js, bearing the following code:
$(document).ready(function() {
 $('.orders-applet tr.hide input').attr('disabled', 'disabled');
 var app = $('.flow-instance.standard---orders');
 $('.orders-applet .orders-prompt .audio-choice', app).
live('save', function(event, mode, value) {

Chapter 10

235

 var text = '';
 if(mode == 'say') {
 text = value;
 } else {
 text = 'Play';
 }
 var instance = $(event.target).parents('.flow-instance.
standard---orders');
 if(text.length> 0) {
 $(instance).trigger('set-name', Order ID: ' + text.substr(0,
6) + '...');
 }
 });
 $('.orders-applet .action.add').live('click', function(event) {
 event.preventDefault();
 var row = $(this).closest('tr');
 varnewRow = $('tfoottr', $(this).parents('.orders-applet')).
html();
 newRow = $('<tr>' + newRow + '</tr>').show().insertAfter(row);
 $('td', newRow).flicker();
 $('input.keypress', newRow).attr('name', 'keys[]');
 $('input', newRow).removeAttr('disabled').focus();
 $(event.target).parents('.options-table').trigger('change');
 return false;
 });
 $('.orders-applet .action.remove').live('click', function() {
 var row = $(this).closest('tr');
 var bgColor = row.css('background-color');
 row.animate({backgroundColor : '#FEEEBD'},'fast').
fadeOut('fast', function() {
 row.remove();
 });
 return false;
 });
 $('.orders-applet .options-table').live('change', function() {
 var first = $('tbodytr', this).first();
 $('.action.remove', first).hide();
 });
 $('.orders-applet .options-table').trigger('change');
});

5. Create another folder called applets.

6. Inside the applets folder, create a folder and name it orders.

Digging into OpenVBX

236

7. Inside the orders folder, create a new file, name it applet.json, and write in the
following code:
{
 "name" : "Orders",
 "sms_name" : "Orders",
 "voice_title" : "Orders",
 "sms_title" : "Orders",
 "description" : "Take a credit card payment.",
 "type" : ["voice","sms"]
}

8. Upload a file called ui.php, bearing the following code:
<?php
 $flow_type = AppletInstance::getFlowType();
 $vp = AppletInstance::getValue('prompt-text');
?>
<div class="vbx-applet monkey-applet">
<h2>Order Tracking</h2>
<p>Enter a custom message that your callers will be greeted by.</
p>
<textarea class="medium" name="prompt-text"><?php
echo (!empty($vp) ? AppletInstance::getValue('prompt-text') :
'Please enter your order id')
?></textarea>
<?php if($flow_type == 'voice'): ?>

 <h2>Next</h2>
 <p>After retrieving the order id, continue to the next applet</
p>
 <div class="vbx-full-pane">
 <?php echo AppletUI::DropZone('next'); ?>
 </div>
<?phpendif; ?>
</div>

9. Upload a file called twiml.php, bearing the following code:
<?php
$ci =&get_instance();
$flow_type = AppletInstance::getFlowType();

if($flow_type != 'voice'){
 $orderid = $_REQUEST['Body'];
}else{
 $digits = clean_digits($ci->input->get_post('Digits'));

Chapter 10

237

 if(!empty($digits)) $orderid = $digits;
}
$prefs = array(
 'voice' => $ci->vbx_settings->get('voice', $ci->tenant->id),
 'language' => $ci->vbx_settings->get('voice_language', $ci-
>tenant->id)
);

$response = new TwimlResponse;

if(!empty($orderid)) {
 $settings = PluginData::get('orders', array(
 'keys' => array(),
 'status' => array(),
));
 $statusArray = array(
 'shipped'=>'Shipped',
 'fullfillment'=>'Sent to Fullfillment',
 'processing'=>'Processing'
);
 $s = '';
 $keys = $settings->keys;
 $status = $settings->status;
 foreach($keys as $i=>$key){
 if($key == $orderid){
 $s = $statusArray[$status[$i]];
 break;
 }
 }
 if($s != ''){
 $response->say("Your order is marked as {$s}.", $prefs);
 if(AppletInstance::getFlowType() == 'voice') {
 $next = AppletInstance::getDropZoneUrl('next');
 if(!empty($next)) $response->redirect($next);
 }
 }else{
 $response->say("We could not find your order.", $prefs);
 }
}elseif($flow_type == 'voice') {
 $gather = $response->gather(array('numDigits' => 5));
 $gather->say(AppletInstance::getValue('prompt-text'), $prefs);
 $response->redirect();
}elseif($flow_type != 'voice') {
 $response->say(AppletInstance::getValue('prompt-text'));
}

$response->respond();

Digging into OpenVBX

238

How it works…
In step 1, we created the orders folder.

In step 2, we uploaded plugin.json; in steps 3 and 4, we created orders.php
and script.js.

In steps 5 and 6, we created the applets and orders folders.

In step 7, we created the applet.json file.

In step 8, we created the ui.php file that tells people what options they have when they add
the order tracker to their call flow. In step 9, we took care of twiml.php that tells OpenVBX
how to handle the calls.

When we log in to OpenVBX now, there will be a menu option called Orders, where we can
enter an order ID and a status. This can be edited at any time.

When the order tracker is added to a call flow, the only option we give users is to change the
message prompting callers to enter their order ID. If the call flow is a voice flow, they can also
add another option to the page.

When an order ID is received, twiml.php will loop through the list of orders until it finds a
match; then it will return a message with the status of the order.

Building a caller ID routing plugin
This simple caller ID plugin will let your user assign caller IDs to incoming phone numbers.

We're going to limit this to call flows, so that you can have the caller ID handled differently for
each option in a call flow.

For example, if you set up extensions, you could say, if the extension is 1 and the call is
coming from 1234567890, forward the call to voice mail; however, if the extension is 2
and the call is coming from 1234567890, call a sales person.

Getting ready
The complete source code for this recipe can be found in the Chapter10/Recipe5 folder in
the source code for this book.

Chapter 10

239

How to do it…
Now let's set up a caller ID system. This system will let us define a set of actions based on
the caller's phone number. So, for example, you could set it so that when your Mom calls,
the system sends her directly to voice mail. Use the following steps to do so:

1. In the plugins folder, create a folder and name it callerid.

2. Within the callerid folder, create another folder and name it applets.

3. Now, within the applets folder, create a folder and name it callerid.

4. In the callerid folder, upload a file called applet.json, bearing the following code:
{
 "name" : "Caller ID Router",
 "description" : "Routes the call based on caller ID",
 "type" : ["voice", "sms"]
}

5. Upload a file called ui.php with the following code:
<?php
$defaultNumberOfChoices = 4;
$keys = AppletInstance::getValue('keys[]', array('1','2','3','4')
);
$choices = AppletInstance::getValue('choices[]');
?>
<div class="vbx-applet callerid-applet">
 <h2>Caller ID Router</h2>
 <p>Type phone numbers without spaces or punctuation. For
example, <code>8005551234</code> instead of <code>(800) 555-1234</
code>.</p>
 <table class="vbx-callerid-grid options-table">
 <thead>
 <tr>
 <td>Caller ID</td>
 <td> </td>
 <td>Applet</td>
 <td>Actions</td>
 </tr>
 </thead>
 <tbody>
 <?php foreach($keys as $i=>$key){ ?>
 <tr>
 <td>
 <fieldset class="vbx-input-container">

Digging into OpenVBX

240

 <input class="keypress" type="text" name="keys[]"
value="<?php echo $key ?>" autocomplete="off" />
 </fieldset>
 </td>
 <td>then</td>
 <td>
 <?php echo AppletUI::dropZone('choices['.($i).']', 'Drop
item here'); ?>
 </td>
 <td>
 Add</
span><span
class="replace">Remove
 </td>
 </tr>
 <?php } ?>
 </tbody>
 <tfoot>
 <tr class="hide">
 <td>
 <fieldset class="vbx-input-container">
 <input class="keypress" type="text" name="new-keys[]"
value="" autocomplete="off" />
 </fieldset>
 </td>
 <td>then</td>
 <td>
 <?php echo AppletUI::dropZone('new-choices[]', 'Drop item
here'); ?>
 </td>
 <td>
 Add</
span>
 </td>
 </tr>
 </tfoot>
 </table><!-- .vbx-callerid-grid -->
 <h3>Oops!</h3>
 <p>When the caller ID is not in the above list</p>
 <?php echo AppletUI::dropZone('invalid'); ?>

</div><!-- .vbx-applet -->

Chapter 10

241

6. Upload a file called script.js bearing the following code:
$(document).ready(function() {
 $('.callerid-applet tr.hide input').attr('disabled',
'disabled');
 var app = $('.flow-instance.standard---callerid');
 $('.callerid-applet .callerid-prompt .audio-choice', app).
live('save', function(event, mode, value) {
 var text = '';
 if(mode == 'say') {
 text = value;
 } else {
 text = 'Play';
 }
 var instance = $(event.target).parents('.flow-instance.
standard---callerid');
 if(text.length> 0) {
 $(instance).trigger('set-name', 'Caller ID: ' + text.
substr(0, 6) + '...');
 }
 });
 $('.callerid-applet input.keypress').live('change',
function(event) {
 var row = $(this).parents('tr');
 $('input[name=^choices]', row).attr('name', 'keys['+$(this).
val()+']');
 });
 $('.callerid-applet .action.add').live('click', function(event)
{
 event.preventDefault();
 var row = $(this).closest('tr');
 var newRow = $('tfoottr', $(this).parents('.callerid-
applet')).html();
 newRow = $('<tr>' + newRow + '</tr>').show().insertAfter(row);
 $('.flowline-item').droppable(Flows.events.drop.options);
 $('td', newRow).flicker();
 $('.flowline-item input', newRow).attr('name', 'choices[]');
 $('input.keypress', newRow).attr('name', 'keys[]');
 $('input', newRow).removeAttr('disabled').focus();
 $(event.target).parents('.options-table').trigger('change');
 return false;
 });
 $('.callerid-applet .action.remove').live('click', function() {
 var row = $(this).closest('tr');

Digging into OpenVBX

242

 var bgColor = row.css('background-color');
 row.animate({backgroundColor : '#FEEEBD'},'fast').
fadeOut('fast', function() {
 row.remove();
 });
 return false;
 });
 $('.callerid-applet .options-table').live('change', function() {
 var first = $('tbodytr', this).first();
 $('.action.remove', first).hide();
 });
 $('.callerid-applet .options-table').trigger('change');
});

7. Upload a file called twiml.php, bearing the following code:
<?php
$response = new Response();
$keys = AppletInstance::getValue('keys');
$invalid = AppletInstance::getDropZoneUrl('invalid');

$selected_item = false;

$choices = AppletInstance::getDropZoneUrl('choices[]');
$keys = AppletInstance::getDropZoneValue('keys[]');
$router_items = AppletInstance::assocKeyValueCombine($keys,
$choices);

if(isset($_REQUEST['From']) && array_key_exists($_REQUEST['From'],
$router_items)){
 $routed_path = $router_items[$_REQUEST['From']];
 $response->addRedirect($routed_path);
 $response->Respond();
 exit;
}else if(isset($_REQUEST['Caller']) && array_key_exists($_
REQUEST['Caller'], $router_items)){
 $routed_path = $router_items[$_REQUEST['Caller']];
 $response->addRedirect($routed_path);
 $response->Respond();
 exit;
}else{
 if(!empty($invalid)){
 $response->addRedirect($invalid);
 $response->Respond();
 exit;
 }else{

Chapter 10

243

 $response->Respond();
 exit;
 }
}

How it works…
In steps 1, 2, and 3, we created the folders to host the applet.

Step 4 saw the creation of the applet.json file.

In steps 5, 6, and 7, we created the ui.php, script.js and twiml.php files to tell
OpenVBX how to behave.

This plugin consists entirely of an applet.

When we add the caller ID plugin to a call flow, we are presented with the ability to add a list
of phone numbers. Then, choose an option for each number.

This is can be configured inside a call flow in whatever manner we want it to be. It can be at
the front of a menu or behind a menu, and can help extend our OpenVBX system to an extent.

Testing call flows
We've built our various plugins and applets to create call flows. Now we want to test them
without dialing in multiple times as we develop our call flows.

Thanks to the Browser Phone built into OpenVBX, this plugin will let us test our flows without
even touching a phone.

When you start testing, the OpenVBX Browser Phone will ring; however, once it's answered, you
can continue testing the different flows or the Text-to-Speech engine while the call is ongoing.

For the plugins used in this book, I use the call flow tester heavily, so I can attest to just how
handy this is to use.

Getting ready
The complete source code for this recipe can be found at Chapter10/Recipe6 in the source
code for this book.

Digging into OpenVBX

244

How to do it…
We've built our plugins; now we want to test whether they work properly. This interface will let
us test our call flows to make sure they all behave correctly, without using any minutes from
our Twilio accounts. Perform the following steps to do so:

1. Inside your plugins folder, create a folder and name it test.

2. Upload a file called plugin.json bearing the following code:
{
 "name" : "Call Flow Test",
 "description" : "Call Flow Test",
 "links" : [
 {
 "url" : "callflowtest",
 "script" : "plugin.php",
 "label" : "Test Call Flow",
 "menu" : "admin"
 }
]
}

3. Upload a file called plugin.php, bearing the following code:
<?php
 $pluginData = OpenVBX::$currentPlugin->getInfo();
 require_once $pluginData['plugin_path'] . '/Test.class.php';
 $test = new Test(OpenVBX::$currentPlugin);
 $exception = false;
 if(isset($_POST['callsid'])){
 $test->setCallSid($_POST['callsid']);
 }
 try{
 if(isset($_POST['test']) AND array_key_exists($_POST['flow'],
$test->getFlows())){
 $test->callFlow($_POST['flow']);
 }
 } catch (Exception $exception) {
 }
?>
<div class="vbx-plugin">
<?php if($exception){?>
 <div class="notify">
 <p class="message">Could not call your OpenVBX Browser Phone -
is it online?<a href class="close action"></p>
 </div>

Chapter 10

245

<?php }?>
<?php if($test->getCallSid()){?>
 <div class="notify">
 <p class="message">Connected to the OpenVBX Browser Phone.
You can continue to test without hanging up.<a href class="close
action"></p>
 </div>
<?php }?>
 <h2>Test Call Flows</h2>
 <p></p>
 <p>Select a call flow to test using the OpenVBX Browser Phone
<small>Please make sure you have set your browser phone to online
first</small>:</p>
 <form action="" method="post">
 <?php echo form_dropdown('flow', $test->getFlows()) ?>
 <button class="submit-button ui-state-focus" type="submit"
name="test">Test Flow</button>
 <input type="hidden" name="callsid" value="<?php echo $test-
>getCallSid()?>">
 </form>
</div>

4. Upload a file called Tester.class.php with the following code:
<?php
class Test{
 protected $callSid;
 protected $plugin;
 public function __construct($plugin){
 $this->setPlugin($plugin);
 $this->getCI()->load->helper('form');
 $this->getCI()->load->helper('url');
 }
 public function callFlow($flow){
 $twiml = new Response();
 $twiml->addPause();
 $twiml->addRedirect(site_url('twiml/applet/voice/' . $flow
.'/start'));
 $this->startClientCall($twiml);
 }
 protected function Echo($twiml){
 return "http://twimlets.com/echo?Twiml=" . $twiml-
>asURL(true);
 }
 protected function attemptRedirect($twiml){
 if(!$this->getCallSid()){

Digging into OpenVBX

246

 return false;
 }
 $response = $this->getTwilio()->request("Accounts/".$this-
>getCI()->twilio_sid."/Calls/" . $this->getCallSid(), "GET");
 if($response->IsError){
 return false;
 }
 if$response->ResponseXml->Call->Status != "in-progress"){
 return false;
 }
 $response = $this->getTwilio()->request("Accounts/".$this-
>getCI()->twilio_sid."/Calls/" . $this->getCallSid(),
"POST",array("Url" => $this->Echo($twiml)));
 if($response->IsError){
 return false;
 }
 if($response->ResponseXml->Call->Status != "in-progress"){
 return false;
 }
 return true;
 }
 protected function startClientCall($twiml){
 if($this->attemptRedirect($twiml)){
 return;
 }
 $response = $this->getTwilio()->request(
 "Accounts/".$this->getCI()->twilio_sid."/Calls",
 "POST",
 array("Caller" => $this->getClient(),
 "To" => $this->getClient(),
 "Url" => $this->Echo($twiml)
)
);
 if($response->IsError){
 throw new Exception('error starting call');
 }
 $this->callSid = (string) $response->ResponseXml->Call->Sid;
 }
 public function getClient(){
 $client = false;
 foreach(OpenVBX::getCurrentUser()->devices as $device){
 if('client:' == substr($device->value, 0,
strlen('client:'))){
 $client = $device->value;
 break;

Chapter 10

247

 }
 }
 if(!$client){
 throw new Exception('could not find client');
 }
 return $client;
 }
 public function getFlows(){
 $flows = array();
 foreach(OpenVBX::getFlows() as $flow){
 $flows[$flow->values['id']] = $flow->values['name'];
 }
 return $flows;
 }
 public function setCallSid($sid){
 $this->callSid = $sid;
 }
 public function getCallSid(){
 return $this->callSid;
 }
 public function getPluginInfo($key){
 $info = $this->getPlugin()->getInfo();
 return $info[$key];
 }
 public function getPlugin (){
 return $this->plugin;
 }
 public function setPlugin (Plugin $plugin){
 $this->plugin = $plugin;
 }
 public function getCI (){
 if(empty($this->ci)){
 $this->setCI(CI_Base::get_instance());
 }
 return $this->ci;
 }
 public function setCI (CI_Base $ci){
 $this->ci = $ci;
 }
 public function getTwilio (){
 if(empty($this->twilio)){
 $this->setTwilio(new TwilioRestClient($this->getCI()-
>twilio_sid, $this->getCI()->twilio_token));
 }

Digging into OpenVBX

248

 return $this->twilio;
 }
 public function setTwilio ($twilio){
 $this->twilio = $twilio;
 }
}

How it works…
In step 1, we created a folder named test. In step 2, we uploaded plugin.json.

In step 3, we created plugin.php, the main interface people see.

Finally, in step 4, we created Tester.class.php, the brain of our flow-testing plugin.

We now have a menu option under the Admin menu called Test Call Flow. This menu option
will load the plugin.php file and will let us choose a call flow to test.

When we select a call flow to test and hit the Test button, we will see the Browser Phone pop
up with an incoming call. This is the start of our test.

After you accept the incoming call, you will be presented with actions based on the call flow
you selected.

For example, if you were testing a call flow that used the directory, it would ask you to enter a
name to search for and you could test it without actually making a phone call.

11
Sending and Receiving

Picture Messages

In this chapter, we will cover

 f Receiving MMS messages

 f Sending picture messages from a website

 f Making the picture message gallery

 f Filtering picture messages

 f Blacklisting and whitelisting the submissions

Introduction
Twilio recently introduced Picture Messaging using MMS as part of its suite of telephone-related
tools. MMS (Multimedia Messaging Service) extends the traditional SMS (Short Messaging
Service) capabilities by adding the ability to send images in addition to text messages.

This gives us a new area to play in as we can now add multimedia to our text messages. This
chapter will explain how to use Twilio's new Picture Messaging and then help you build a
collaborative picture message gallery, where anyone who has the gallery's phone number can
send their photos for viewing.

The picture message gallery will let us display photos and messages from events and allow
the gallery's visitors to forward a photo to their and their friends' phones, as a way of sharing.
As part of the tutorial, we'll refresh this gallery every 10 seconds and display the latest photos.

We'll also add filtering to eliminate messages with profanity and images that may be
considered inappropriate.

Sending and Receiving Picture Messages

250

Finally, we'll set up a simple blacklist and whitelist so that we can control who sends in photos
to the gallery.

Receiving MMS messages
First, let's learn how to receive picture messages. This is similar to how we receive text
messages; the only difference is that picture messages using MMS also include a field named
MediaUrl, which contains the URL that was attached to the message.

We will begin by setting up a file named listener.php, which is where we will configure
Twilio to send our messages. This script will store all incoming messages in a MySQL database
and download the attached image locally. Then we will set up a file named messages.php,
which will display the message along with the image.

Getting ready
The complete code for this recipe can be found in the Code/Recipe1/ folder.

How to do it…
Let's set up our listener.php file to store all incoming messages and messages.php to
view messages we've received.

1. Upload config.php to your web server with the following code:
 <?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
 $myUrl = ''; // THE URL TO YOUR SCRIPT

 $dbhost = ''; // YOUR DATABASE HOST
 $dbname = ''; // YOUR DATABASE NAME
 $dbuser = ''; // YOUR DATABASE USER
 $dbpass = ''; // YOUR DATABASE PASS
 ?>

2. Upload pdo.class.php to your web server. This file will handle our database
connections.

3. Next, upload the following code in the functions.php file to your web server:
<?php
function cache_image($imageurl = '',$name){
 $imagename = $name.'.'.get_image_extension($imageurl);

Chapter 11

251

 if(file_exists('./tmp/'.$imagename)){return
 'tmp/'.$imagename;}
 $image = file_get_contents_curl($imageurl);
 file_put_contents('tmp/'.$imagename,$image);
 return 'tmp/'.$imagename;
}
function file_get_contents_curl($url) {
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_HEADER, 0);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_URL, $url);
 $data = curl_exec($ch);
 curl_close($ch);
 return $data;
}
function get_image_extension($filename) {
 $ch = curl_init($filename);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_exec($ch);
 $ext = curl_getinfo($ch, CURLINFO_CONTENT_TYPE);
 $ext = explode(";",$ext);
 $ext = $ext[0];
 $ext = explode("/",$ext);
 return end($ext);
}
 function cleanVar($retVal,$type=''){
 switch($type){
 case 'phone':
 $retVal = preg_replace("/[^0-9]/", "", $retVal);
 break;
 case 'text':
 default:
 $retVal = urldecode($retVal);
 $retVal = preg_replace("/[^A-Za-z0-9 ,']/", "",
 $retVal);
 break;
 }
 return $retVal;
 }

4. Load the following database schema into your database:
CREATE TABLE 'call_log' (
 'ID' bigint(20) NOT NULL AUTO_INCREMENT,
 'msg' text,

Sending and Receiving Picture Messages

252

 'phonenumber' varchar(25) NOT NULL DEFAULT '',
 'created' timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 'type' varchar(25) NOT NULL,
 'deleted' tinyint(4) NOT NULL DEFAULT '0',
 'status' tinyint(4) NOT NULL DEFAULT '0',
 'photo' varchar(255) NOT NULL,
 PRIMARY KEY ('ID'),
 KEY 'deleted' ('deleted'),
 KEY 'status' ('status'),
 KEY 'type' ('type')
) ENGINE=MyISAM DEFAULT CHARSET=latin1

Our call_log table is simple. It stores all received information from MMS or SMS
messages, including the body of the message and the phone number from which the
message was sent in the msg and phonenumber fields respectively. Finally, it stores
the image URL in the photo field.

5. Upload the following listener.php file to your web server:
<?php
 include("config.php");
 include("pdo.class.php");
 include("functions.php");

 $pdo = Db::singleton();
 $body = cleanVar($_POST['Body'],'text');
 $from = cleanVar($_POST['From'],'phone');
 $media = '';
 $numMedia = $_POST['NumMedia'];
 if($numMedia > 0){
 for ($i = 0; $i <= $numMedia; $i++) {
 $key = 'MediaUrl'.$i;
 $media = $_POST[$key];
 if(isset($media) && !empty($media)){
 $media = cache_image($media,$id);
 $res = $pdo->query("INSERT INTO call_log SET
 msg='{$body}',phonenumber='{$from}'
 ,photo='{$media}',type='s'");
 }
 }
 }

6. Create a folder named tmp on your web server which will store our cached images. If
necessary, make this folder is writable as well.

Chapter 11

253

7. Create a file named messages.php and add the following code to it:
<?php
 include("config.php");
 include("pdo.class.php");
 include("functions.php");

 $pdo = Db::singleton();
 $sql = 'select * from call_log ORDER BY ID DESC';
 $res = $pdo->query($sql);
?>
 <table width=100%>
 <thead>
 <tr>
 <th>From</th>
 <th>Message</th>
 <th>Media</th>
 <th>Sent</th>
 </tr>
 </thead>
 <tbody>
<?php
 while($row = $res->fetch()){
 $line = array();
 $id = $row['ID'];
 $created = $row['created'];
 $media = $row['photo'];
 $msg = $row['msg'];
 $from = $row['phonenumber'];
 $img = $myUrl.$media.'?' . filemtime($media);
?>
 <tr>
 <td><?=$from?></td>
 <td><?=$msg?></td>
 <td><img src="<?=$img?>" /></td>
 <td><?=$created?></td>
 </tr>
<?php
 }
?>
 </tbody>
 </table>

Sending and Receiving Picture Messages

254

8. Finally, we have to point your Twilio phone number to listener.php; you can do
this by logging into your Twilio account and entering your phone numbers.

9. Insert the URL that directs to this page in the Messaging Request URL box. Any
messages that you receive on your number will be processed via listener.php.

Sending picture messages from a website
Sending picture messages to phones is handy. Allowing people to send a photo from a website
can be great for the purpose of sharing and getting the message out about on-going events
and sales deals.

Sending these MMS messages works similar to SMS messages. The key difference is that we
include a URL to our image files.

The new URL field is named MediaUrl, which may sound familiar because we look for a
similar field when we receive our messages.

We're going to use the TwilioMMS class to send our MMS message with an image as shown
in the following code snippet:

<?php
 class TwilioMMS{
 public $sid;
 public $token;
 public function __construct($sid,$token){
 $this->sid = $sid;
 $this->token = $token;
 }

Chapter 11

255

 public function sendMessage($to,$from,$body,$murl){
 $url = "https://api.twilio.com/2010-04-01/Accounts/{$this-
 >sid}/Messages";
 $data = array();
 $data["To"]=$to;
 $data['From']=$from;
 $data['Body']=$body;
 $data['MediaUrl']=$murl;
 $ch = curl_init();
 $timeout=5;
 curl_setopt($ch,CURLOPT_URL,$url);
 curl_setopt($ch,CURLOPT_RETURNTRANSFER,1);
 curl_setopt($ch,CURLOPT_CONNECTTIMEOUT,$timeout);
 curl_setopt($ch, CURLOPT_USERPWD, "{$this->sid}:{$this-
 >token}");
 curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
 curl_setopt($ch, CURLOPT_POST, true);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $data);
 $output = curl_exec($ch);
 curl_close($ch);

 $output = simplexml_load_string($output);
 return $output;
 }
 }

The TwilioMMS class uses the updated API from Twilio to send images as MMS messages
using cURL for PHP. You'll recognize some fields in this function from sending SMS messages.
The "To", "From", and "Body" fields were always there, but now, thanks to adding the MMS
feature, we've also got the new "MediaUrl" field mentioned earlier. Now, let's get into how
this works.

Getting ready
The complete code for this recipe can be found in the Code/Recipe2/ folder.

How to do it…
In this recipe, we're going to set up send.php that will take a phone number, a message, and
an image and send it to the phone number we specified.

1. Upload config.php to your web server with the following code:
 <?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID

Sending and Receiving Picture Messages

256

 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME
 FROM
 $myUrl = ''; // THE URL TO YOUR PHOTO GALLERY
 ?>

2. Then upload functions.php to your web server with the following code:
<?php
 class TwilioMMS{
 public $sid;
 public $token;
 public function __construct($sid,$token){
 $this->sid = $sid;
 $this->token = $token;
 }
 public function sendMessage($to,$from,$body,$murl){
 $url = "https://api.twilio.com/2010-04-01/Accounts/{$this-
>sid}/Messages";
 $data = array();
 $data["To"]=$to;
 $data['From']=$from;
 $data['Body']=$body;
 $data['MediaUrl']=$murl;
 $ch = curl_init();
 $timeout=5;
 curl_setopt($ch,CURLOPT_URL,$url);
 curl_setopt($ch,CURLOPT_RETURNTRANSFER,1);
 curl_setopt($ch,CURLOPT_CONNECTTIMEOUT,$timeout);
 curl_setopt($ch, CURLOPT_USERPWD, "{$this->sid}:{$this-
 >token}");
 curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
 curl_setopt($ch, CURLOPT_POST, true);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $data);
 $output = curl_exec($ch);
 curl_close($ch);

 $output = simplexml_load_string($output);
 return $output;
 }
 }
 function cleanVar($retVal,$type=''){
 switch($type){
 case 'phone':

Chapter 11

257

 $retVal = preg_replace("/[^0-9]/", "", $retVal);
 break;
 case 'text':
 default:
 $retVal = urldecode($retVal);
 $retVal = preg_replace("/[^A-Za-z0-9 ,']/", "",
 $retVal);
 break;
 }
 return $retVal;
 }

3. Upload send.php to your web server with the following code:
<?php
 session_start();
 include("config.php");
 include("functions.php");

 if(isset($_POST['phone'])){
 $ph = cleanVar($_POST['phone'], 'phone');
 $message = cleanVar($_POST['message'], 'text');
 $url = $_POST['himg'];
 $target_path = 'tmp/';
 $target_path = $target_path . basename(
 $_FILES['uploadedfile']['name']);
 if(move_uploaded_file
 ($_FILES['uploadedfile']['tmp_name'], $target_path)
){
 $url = $myUrl.$target_path;
 }
 $tmms = new TwilioMMS($accountsid,$authtoken);
 $smsg = $tmms->sendMessage($ph,$fromNumber,$message,$url);
 echo "<pre>".print_r($smsg,true)."</pre>";
 }else{
 ?>
 <form enctype="multipart/form-data" action=
 "send.php" method="POST">

 Enter your phone number: <input type="tel"
 name="phone" />

 Enter your message: <input type="text"
 name="message" />

Sending and Receiving Picture Messages

258

 Choose a file to upload: <input name="uploadedfile"
type="file" />

 <input type="submit" value="Upload File" />

 </form>
 <?php
 }
?>

4. Create a folder named tmp on your web server.

How it works…
In steps 1 and 2, we uploaded our config.php and functions.php files. The
functions.php file contains our TwilioMMS class, and config.php is used for our Twilio
account information.

Finally, in step 3, we uploaded send.php to handle the sending of our MMS messages to the
specified phone numbers.

The send.php file will present a user with a form in which they can enter a phone number
and a message, and upload an image.

The image is then saved to the tmp folder and sent to the specified phone number.

Using our TwilioMMS class, we pass the phone number we want to send the image to, the
phone number we want to send it from, our message, and the URL of the image that we want
to send.

This will send our picture message to the specified phone number.

Making the picture message gallery
We've covered the sending and receiving of MMS messages. Now let's put it together and
build our photo gallery.

This gallery will resemble polaroid images, and we'll let viewers click a
photo to send it to another user.

Chapter 11

259

The layout will actually look like a pile of polaroid images thrown onto a wooden table. Directly
beneath each image, we will display the message that accompanied it if there was one as
shown in the following screenshot:

We're building this interface using bootstrap, so when you click on a photo, a handy modal
window will pop up to send the photo to another number as shown in the following screenshot:

Sending and Receiving Picture Messages

260

Clicking on the Share Photo button will submit the form to send.php and then send the
photo in a message to the phone number entered.

Getting ready
The complete code for this recipe can be found in the Code/Recipe3/ folder.

How to do it…
Ready to make our messages look cool? Let's set up our photo gallery to receive, display, and
send photos to other people.

1. Upload config.php to your web server with the following code:
 <?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME
 FROM
 $myUrl = ''; // THE URL TO YOUR PHOTO GALLERY

$dbhost = ''; // YOUR DATABASE HOST
 $dbname = ''; // YOUR DATABASE NAME
 $dbuser = ''; // YOUR DATABASE USER
 $dbpass = ''; // YOUR DATABASE PASS
 ?>

2. Upload the pdo.class.php, wood-bg.jpg, and style.css files to your web
server.

3. Upload functions.php, which combines the last two versions of functions.php,
with the following code:
<?php
function cache_image($imageurl = '',$name){
 $imagename = $name.'.'.get_image_extension($imageurl);
 if(file_exists('./tmp/'.$imagename)){return 'tmp/'.$imagename;}
 $image = file_get_contents_curl($imageurl);
 file_put_contents('tmp/'.$imagename,$image);
 return 'tmp/'.$imagename;
}
function file_get_contents_curl($url) {
$ch = curl_init();
curl_setopt($ch, CURLOPT_HEADER, 0);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_URL, $url);

Chapter 11

261

$data = curl_exec($ch);
curl_close($ch);
return $data;
}
function get_image_extension($filename) {
 $ch = curl_init($filename);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_exec($ch);
 $ext = curl_getinfo($ch, CURLINFO_CONTENT_TYPE);
 $ext = explode(";",$ext);
 $ext = $ext[0];
 $ext = explode("/",$ext);
 return end($ext);
}
 function cleanVar($retVal,$type=''){
 switch($type){
 case 'phone':
 $retVal = preg_replace("/[^0-9]/", "", $retVal);
 break;
 case 'text':
 default:
 $retVal = urldecode($retVal);
 $retVal = preg_replace("/[^A-Za-z0-9 ,']/", "",
 $retVal);
 break;
 }
 return $retVal;
 }
class TwilioMMS{
 public $sid;
 public $token;
 public function __construct($sid,$token){
 $this->sid = $sid;
 $this->token = $token;
 }
 public function sendMessage($to,$from,$body,$murl){
 $url = "https://api.twilio.com/2010-04-01/Accounts/{$this-
>sid}/Messages";
 $data = array();
 $data["To"]=$to;
 $data['From']=$from;
 $data['Body']=$body;
 $data['MediaUrl']=$murl;
 $ch = curl_init();

Sending and Receiving Picture Messages

262

 $timeout=5;
 curl_setopt($ch,CURLOPT_URL,$url);
 curl_setopt($ch,CURLOPT_RETURNTRANSFER,1);
 curl_setopt($ch,CURLOPT_CONNECTTIMEOUT,$timeout);
 curl_setopt($ch, CURLOPT_USERPWD, "{$this->sid}:{$this-
 >token}");
 curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
 curl_setopt($ch, CURLOPT_POST, true);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $data);
 $output = curl_exec($ch);
 curl_close($ch);

 $output = simplexml_load_string($output);
 return $output;
 }
}

4. Now let's load our database schema with the following query:
CREATE TABLE 'call_log' (
 'ID' bigint(20) NOT NULL AUTO_INCREMENT,
 'msg' text,
 'phonenumber' varchar(25) NOT NULL DEFAULT '',
 'created' timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 'type' varchar(25) NOT NULL,
 'deleted' tinyint(4) NOT NULL DEFAULT '0',
 'status' tinyint(4) NOT NULL DEFAULT '0',
 'photo' varchar(255) NOT NULL,
 PRIMARY KEY ('ID'),
 KEY 'deleted' ('deleted'),
 KEY 'status' ('status'),
 KEY 'type' ('type')
) ENGINE=MyISAM DEFAULT CHARSET=latin1

5. Upload listener.php to your web server with the following code:
 <?php
 include("config.php");
 include("pdo.class.php");
 include("functions.php");

 $pdo = Db::singleton();
 $body = cleanVar($_POST['Body'],'text');
 $from = cleanVar($_POST['From'],'phone');
 $media = '';
$numMedia = $_POST['NumMedia'];

Chapter 11

263

if($numMedia > 0){
 for ($i = 0; $i <= $numMedia; $i++) {
 $key = 'MediaUrl'.$i;
 $media = $_POST[$key];
 if(isset($media) && !empty($media)){
 $media = cache_image($media,$id);
 $res = $pdo->query("INSERT INTO callog SET msg=
 '{$body}',phonenumber='{$from}',
 photo='{$media}',type='s'");
 }
 }
 }

6. Create a folder named tmp that will store our cached images.

7. Now, we have to point your Twilio phone number to listener.php.

8. Insert the URL that directs to this page in the Messaging Request URL field. Now,
any calls that you receive on this number will be processed via listener.php as
shown n the following screenshot:

Ok, we've set up the first part of our gallery and are now receiving picture messages
as well a storing them in a database. The next few steps will involve handling our
gallery display and sharing photos with others.

Sending and Receiving Picture Messages

264

9. Create a file named header.php with the following code:
<html>
<head>
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0">
 <!-- Latest compiled and minified CSS -->
 <link href="//netdna.bootstrapcdn.com/bootstrap/
 3.0.0-rc1/css/bootstrap.min.css" rel="stylesheet">
<link
 href="http://fonts.googleapis.com/css?family=
 Reenie+Beanie:regular" rel="stylesheet" type="text/css">
 <link href="style.css" rel="stylesheet" type="text/css">
 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/
jquery.min.js"></script>
 <!-- Latest compiled and minified JavaScript -->
 <script src="//netdna.bootstrapcdn.com/bootstrap/
 3.0.0-rc1/js/bootstrap.min.js"></script>
 <script src="script.js"></script>
</head>
<body>
<header>
 <div class="navbar navbar-inverse">
 <div class="container">
 <button type="button" class="navbar-toggle" data-
 toggle="collapse" data-target=
 ".navbar-responsive-collapse">

 </button>
 <a class="navbar-brand" href=
 "index.php">Photo Gallery
 <div class="nav-collapse collapse navbar-responsive-
 collapse">
 <ul class="nav navbar-nav">
 <li class="active">
 Home

 </div>
 </div>
 </div>
</header>
<div class="container">
 <div class="polaroids">

Chapter 11

265

Now, let's create footer.php with the following code:

 </div>
 </div>
<!-- Modal -->
<div class="modal fade" id="myModal">
 <div class="modal-dialog">
 <form method="post" action="send.php">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-
 dismiss="modal" aria-hidden=
 "true">×</button>
 <h4 class="modal-title">Share Photo</h4>
 </div>
 <div class="modal-body">
 <center>

 <fieldset>
 <div class="form-group">
 <input type="tel" class="form-control" id="phone"
name="phone" placeholder="Enter phone number">
 </div>
 <div class="form-group">
 <input type="text" class="form-control"
 id="message" name="message"
 placeholder="Message">
 </div>
 </fieldset>
 <input type="hidden" value="" name="himg"
 id="himg" />
 </center>
 </div>
 <div class="modal-footer">
 <button type="button" class="btn btn-default" data-
 dismiss="modal">Close</button>
 <button type="button" class="btn btn-primary">Share
 Photo</button>
 </div>
 </form>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->
</body>
</html>

Sending and Receiving Picture Messages

266

10. Create index.php, which handles the actual displaying of the photos, with the
following code:
<?php
 include("config.php");
 include("pdo.class.php");
 include("functions.php");

 $pdo = Db::singleton();
 if($_SERVER['HTTP_X_REQUESTED_WITH']==''){
 include("header.php");
 }
 $sql = 'select * from call_log ORDER BY ID DESC';
 $res = $pdo->query($sql);
 $items = array();
 while($row = $res->fetch()){
 $line = array();
 $id = $row['ID'];
 $created = $row['created'];
 $media = $row['photo'];
 $msg = $row['msg'];
 $img = $myUrl.$media.'?' . filemtime($media);
?>
 <a href="photo.php?id=<?=$id?>" title="<?=$msg?>"
 class="123btn" data-id="<?=$id?>" data-
 img="<?=$img?>">
 <img src="<?=$img?>" title="<?=$msg?>"
 alt="<?=$msg?>" class="photo-image" />

<?php
 }
 if($_SERVER['HTTP_X_REQUESTED_WITH']==''){
 include("footer.php");
 }
?>

11. Now, let's set up the script.js file that will act as the brains of our gallery app by
handling our photo sharing and update checks:
$(document).ready(function() {
 $.ajaxSetup({ cache: false });
 daemon();
 $(".123btn").on('click',function(e){
 var img = $(this).data("img");
 $('#mimg').attr("src",img);
 $('#himg').val(img);

Chapter 11

267

 $('#myModal').modal('show');
 e.preventDefault();
 return false;
 });
});
function daemon() {
 $.get("index.php",function(result){
 var cacheDom = $(".polaroids").html();
 if(result != cacheDom){
 $(".polaroids").fadeOut().html(result).fadeIn();
 }
 setTimeout(daemon, 10000);
 });
}

12. Finally, let's upload our send.php file with the following code:

<?php
 session_start();
 include("config.php");
 include("functions.php");

 if(isset($_POST['phone'])){
 $ph = cleanVar($_POST['phone'], 'phone');
 $message = cleanVar($_POST['message'], 'text');
 $url = $_POST['himg'];
 $tmms = new TwilioMMS($accountsid,$authtoken);
 $smsg = $tmms->sendMessage($ph,$fromNumber,$message,$url);
 header("Location: index.php");
 }
?>

How it works…
In step 1, we uploaded config.php and set up our Twilio and database settings.

In step 2, we uploaded the files which we don't change much: pdo.class.php, wood-bg.
jpg, and style.css.

In step 3, we uploaded our combined functions.php file, which contains the functions from
our first two recipes in this chapter. These functions will download and cache images attached
to the received messages and handle the sending of outgoing MMS messages.

In step 4, we set up our database to store our call information.

Sending and Receiving Picture Messages

268

In step 5, we uploaded listener.php that handles the incoming MMS messages by storing
them in our MySQL database and the downloading of any images attached to those messages
to our tmp folder.

In step 6, we created our tmp folder.

Then, we used step 7 to add listener.php to a phone number; this means any incoming
messages to that phone number will go through listener.php. When a message comes in,
we will store the POST data as a serialized string in our database.

After that, in steps 8 and 9, we got into the frontend of our application. We set up our
header.php and footer.php files that handle the look of the site. The footer.php file
also contains our modal window, which loads whenever a viewer clicks on an image. The
modal window lets viewers send the selected photo to their phones or their friends' phone
along with a message by posting the form to our send.php file.

In step 10, we created index.php that queries the database and displays the photos we've
sent to our Twilio number in the first part of this recipe.

The index.php file also uses an interesting header check to see if the file is being called
via AJAX. The following if statement checks to see whether the file was called via AJAX; if it
wasn't, which means $_SERVER['HTTP_X_REQUESTED_WITH'] was equal to '', then it
will include our header.php and footer.php files, otherwise, it will only display the other
output of the file, which is the photos:

if($_SERVER['HTTP_X_REQUESTED_WITH']==''){}

Why did we use this? Because in step 11, we set up script.js, which covers the following
two things:

First, it listens for any clicks on a photo and displays the modal window we use as our photo
sharing form and second, it calls a function named daemon() every 10 seconds.

The daemon() function will send an AJAX request to return the content of index.php and
then checks if the returned content has changed since the last time it ran. It will then refresh
the photos without having to refresh the entire page.

We then compare the existing photos inside the <div class="polaroids"></div>
element for changes, instead of simply reloading the entire element every 10 seconds, since
that makes for a more enjoyable viewing experience.

Finally, we uploaded send.php, which is the file that sends the photos when users choose to
share a photo with someone else.

Chapter 11

269

Filtering picture messages
Since we're opening this up to allow others to send photos to our gallery, we want to keep it
family friendly. We're going to do this by adding two types of checks.

The first check will make sure that the message doesn't contain any obscene words and the
second will be to check the image to make sure there's no nudity.

Getting ready
The complete code for this recipe can be found in the Code/Recipe4/ folder.

How to do it…
We're going to modify our photo gallery to check incoming messages for profanity and
inappropriate photos.

1. First, upload ImageFilter.class.php to your photo gallery site.

2. Next, update functions.php, which adds the profanity filter checker with the
following code:
<?php
 function cache_image($imageurl = '',$name){
 $imagename = $name.'.'.get_image_extension($imageurl);
 if(file_exists('./tmp/'.$imagename)){return
'tmp/'.$imagename;}
 $image = file_get_contents_curl($imageurl);
 file_put_contents('tmp/'.$imagename,$image);
 return 'tmp/'.$imagename;
 }
 function file_get_contents_curl($url) {
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_HEADER, 0);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_URL, $url);
 $data = curl_exec($ch);
 curl_close($ch);

 return $data;
 }
 function get_image_extension($filename) {
 $ch = curl_init($filename);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_exec($ch);

Sending and Receiving Picture Messages

270

 $ext = curl_getinfo($ch, CURLINFO_CONTENT_TYPE);
 $ext = explode(";",$ext);
 $ext = $ext[0];
 $ext = explode("/",$ext);
 return end($ext);
 }
function cleanVar($retVal,$type=''){
 switch($type){
 case 'phone':
 $retVal = preg_replace("/[^0-9]/", "", $retVal);
 break;
 case 'text':
 default:
 $retVal = urldecode($retVal);
 $retVal = preg_replace("/[^A-Za-z0-9 ,']/", "",
 $retVal);
 break;
 }
 return $retVal;
}
 class TwilioMMS{
 public $sid;
 public $token;
 public function __construct($sid,$token){
 $this->sid = $sid;
 $this->token = $token;
 }
 public function sendMessage($to,$from,$body,$murl){
 $url = "https://api.twilio.com/2010-04-01/Accounts/{$this-
>sid}/Messages";
 $data = array();
 $data["To"]=$to;
 $data['From']=$from;
 $data['Body']=$body;
 $data['MediaUrl']=$murl;
 $ch = curl_init();
 $timeout=5;
 curl_setopt($ch,CURLOPT_URL,$url);
 curl_setopt($ch,CURLOPT_RETURNTRANSFER,1);
 curl_setopt($ch,CURLOPT_CONNECTTIMEOUT,$timeout);
 curl_setopt($ch, CURLOPT_USERPWD, "{$this->sid}:{$this-
>token}");
 curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
 curl_setopt($ch, CURLOPT_POST, true);

Chapter 11

271

 curl_setopt($ch, CURLOPT_POSTFIELDS, $data);
 $output = curl_exec($ch);
 curl_close($ch);
 $output = simplexml_load_string($output);
 return $output;
 }
 }
 function censorString($string) {
 function isProfane($word) {
 $true = "{\"response\": \"true\"}";
 $ci = curl_init("http://www.wdyl.com/profanity?q=" .
 $word);
 curl_setopt($ci, CURLOPT_RETURNTRANSFER, true);
 $ce = curl_exec($ci);
 return $ce == $true;
 }
 function addStars($word) {
 $length = strlen($word);
 return substr($word, 0, 1) . str_repeat("*", $length
 - 2) . substr($word, $length - 1, 1);
 }
 $result = "";
 $stringarray = explode(" ", $string);
 foreach ($stringarray as $word) {
 if (isProfane($word)) {
 $result = $result . addStars($word) . " ";
 } else {
 $result = $result . $word . " ";
 }
 }
 return $result;
 }

This update adds the new censorString function that separates each string we
send into separate words, and then checks each word against Google's Profanity
Filter API.

Any word that returns as being a bad word, is replaced with * after the first letter, up
until the last letter.

3. Update listener.php to the new version with the following code:

 <?php
 include("config.php");
 include("pdo.class.php");
 include("ImageFilter.class.php");

Sending and Receiving Picture Messages

272

 include("functions.php");

 $pdo = Db::singleton();

 $body = censorString(cleanVar($_POST['Body'],'text'));
 $from = cleanVar($_POST['From'],'phone');
 $media = '';
$numMedia = $_POST['NumMedia'];
if($numMedia > 0){
 for ($i = 0; $i <= $numMedia; $i++) {
 $key = 'MediaUrl'.$i;
 $media = $_POST[$key];
 if(isset($media) && !empty($media)){
 $media = cache_image($media,$id);
 $filter = new ImageFilter();
 $score = $filter->GetScore($media);
 if(isset($score)){
 if($score >= 30){
 unlink($media);
 }else{
 $res = $pdo->query("INSERT INTO call_log SET
 msg='{$body}',phonenumber='{$from}',photo=
 '{$media}',type='s'");
 }
 }
 }
 }
 }

How it works…
In step 1, we uploaded our ImageFilter.class.php file. This class will analyze all images
we sent, looking for skin tone, and return a percentage based on the score. If the percentage
is greater than 30 percent, it's safe to just delete this image and forget about it. If it's less
than 30 percent, then we will display it.

In step 2, we updated functions.php to include our new censorString function, which
is a handy function that will take apart any sentence we pass and loop through the resulting
array, sending each word to be checked using Google's Profanity Filter API. If the word fails,
then we grab the first and last letters and replace all other letters in the word with stars.

In step 3, we updated listener.php to include two new checks: first to clean the message
body for any profane words and second, to check the image to see if it's an inappropriate
image and if it is, then to delete it.

Chapter 11

273

We use Google's Profanity Filter API, rather than keeping a list of our own banned words,
because this is more flexible, and APIs are always cooler.

Blacklisting and whitelisting the
submissions

Being able to blacklist and whitelist the submissions is also important to include trusted users
or exclude abusive ones.

In our case, we're going to set up two arrays, one for blacklisted numbers and one for
whitelisted numbers.

If a phone sends an image, we'll first check to see whether the phone number is in the
blacklist and if not, then we'll check the whitelist.

If the phone number is in the blacklist, then we ignore it. If it's in the whitelist, then we skip
the filtering we placed in the previous recipe and upload the photo directly to the gallery.

Just like the previous recipe, we won't change all of the files. We will just update
our previously updated gallery. The files that we will change are config.php,
functions.php, and listener.php.

Getting ready
The complete code for this recipe can be found in the Code/Recipe5/ folder.

How to do it…
Let's set up a blacklist and whitelist on our photo gallery now.

1. Let's update config.php with our Twilio account information, our database
information, and finally, any whitelisted or blacklisted phone numbers using the
following code:
<?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $fromNumber = ''; // PHONE NUMBER CALLS WILL COME FROM
 $myUrl = ''; // THE URL TO YOUR PHOTO GALLERY

 $blacklist = array(
 '7894561230'
);
 $whitelist = array(
 '2045697890','4041234567'
);

Sending and Receiving Picture Messages

274

 $dbhost = ''; // YOUR DATABASE HOST
 $dbname = ''; // YOUR DATABASE NAME
 $dbuser = ''; // YOUR DATABASE USER
 $dbpass = ''; // YOUR DATABASE PASS
?>

As you can see, the only real difference to config.php here is the $blacklist
and $whitelist arrays that contain the phone numbers we want to ban or globally
allow.

2. Update functions.php to add our new functions using the following code:
<?php
 function cache_image($imageurl = '',$name){
 $imagename = $name.'.'.get_image_extension($imageurl);
 if(file_exists('./tmp/'.$imagename)){return
'tmp/'.$imagename;}
 $image = file_get_contents_curl($imageurl);
 file_put_contents('tmp/'.$imagename,$image);
 return 'tmp/'.$imagename;
 }
 function file_get_contents_curl($url) {
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_HEADER, 0);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_URL, $url);
 $data = curl_exec($ch);
 curl_close($ch);

 return $data;
 }
 function get_image_extension($filename) {
 $ch = curl_init($filename);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_exec($ch);
 $ext = curl_getinfo($ch, CURLINFO_CONTENT_TYPE);
 $ext = explode(";",$ext);
 $ext = $ext[0];
 $ext = explode("/",$ext);
 return end($ext);
 }
function cleanVar($retVal,$type=''){
 switch($type){
 case 'phone':
 $retVal = preg_replace("/[^0-9]/", "", $retVal);

Chapter 11

275

 break;
 case 'text':
 default:
 $retVal = urldecode($retVal);
 $retVal = preg_replace("/[^A-Za-z0-9 ,']/", "",
 $retVal);
 break;
 }
 return $retVal;
}
 class TwilioMMS{
 public $sid;
 public $token;
 public function __construct($sid,$token){
 $this->sid = $sid;
 $this->token = $token;
 }
 public function sendMessage($to,$from,$body,$murl){
 $url = "https://api.twilio.com/2010-04-
 01/Accounts/{$this->sid}/Messages";
 $data = array();
 $data["To"]=$to;
 $data['From']=$from;
 $data['Body']=$body;
 $data['MediaUrl']=$murl;
 $ch = curl_init();
 $timeout=5;
 curl_setopt($ch,CURLOPT_URL,$url);
 curl_setopt($ch,CURLOPT_RETURNTRANSFER,1);
 curl_setopt($ch,CURLOPT_CONNECTTIMEOUT,$timeout);
 curl_setopt($ch, CURLOPT_USERPWD, "{$this->sid}:{$this-
>token}");
 curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
 curl_setopt($ch, CURLOPT_POST, true);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $data);
 $output = curl_exec($ch);
 curl_close($ch);
 $output = simplexml_load_string($output);
 return $output;
 }
 }
 function censorString($string) {
 function isProfane($word) {
 $true = "{\"response\": \"true\"}";

Sending and Receiving Picture Messages

276

 $ci = curl_init("http://www.wdyl.com/profanity?q=" .
 $word);
 curl_setopt($ci, CURLOPT_RETURNTRANSFER, true);
 $ce = curl_exec($ci);
 return $ce == $true;
 }
 function addStars($word) {
 $length = strlen($word);
 return substr($word, 0, 1) . str_repeat("*", $length
 - 2) . substr($word, $length - 1, 1);
 }
 $result = "";
 $stringarray = explode(" ", $string);
 foreach ($stringarray as $word) {
 if (isProfane($word)) {
 $result = $result . addStars($word) . " ";
 } else {
 $result = $result . $word . " ";
 }
 }
 return $result;
 }
 function clean_number($number){
 return preg_replace("/[^0-9]/", "", $number);
 }
 function is_allowed($number, $whitelist = array()){
 if (in_array($number, $whitelist)) {
 return true;
 }
 return false;
 }
 function is_banned($number, $blacklist = array()){
 if (in_array($number, $blacklist)) {
 return true;
 }
 return false;
 }

3. Finally, let's update listener.php with the following code to handle our blacklisted
and whitelisted numbers:

<?php
 include("config.php");
 include("pdo.class.php");
 include("ImageFilter.class.php");

Chapter 11

277

 include("functions.php");

 $pdo = Db::singleton();

 $from = clean_number($_POST['From']);

 if(!is_banned($from,$blacklist)){
 $good = 1;
 if(!is_allowed($from,$whitelist)){
 $body = censorString(cleanVar($_POST['Body'],'text')
);
 $good = 0;
 }else{
 $body = cleanVar($_POST['Body'],'text');
 }
 $numMedia = $_POST['NumMedia'];
 if($numMedia > 0){
 for ($i = 0; $i <= $numMedia; $i++) {
 $key = 'MediaUrl'.$i;
 $media = $_POST[$key];
 if(isset($media) && !empty($media)){
 $media = cache_image($media,$id);
 if(is_allowed($from,$whitelist)){
 $good = 1;
 }else{
 $filter = new ImageFilter();
 $score = $filter->GetScore($media);
 if(isset($score)){
 if($score >= 30){
 unlink($media);
 }else{
 $good = 1;
 }
 }
 }
 }
 if($good){
 $res = $pdo->query("INSERT INTO call_log SET
 msg='{$body}',phonenumber='{$from}',photo=
 '{$media}',type='s'");
 }
 }
 }
 }

Sending and Receiving Picture Messages

278

How it works…
In step 1, we updated our config.php file to include two new variables, $blacklist and
$whitelist. Both of these variables are arrays that can contain phone numbers we don't
want to send photos to (blacklist), or phone numbers we want to always be able to send
photos to (whitelist).

In step 2, we updated our functions.php file to include three new functions as shown in
the following code snippet:

 function clean_number($number){
 return preg_replace("/[^0-9]/", "", $number);
 }
 function is_allowed($number, $whitelist = array()){
 if (in_array($number, $whitelist)) {
 return true;
 }
 return false;
 }
 function is_banned($number, $blacklist = array()){
 if (in_array($number, $blacklist)) {
 return true;
 }
 return false;
 }

The clean_number function removes all nonnumeric characters from a phone number.

The is_allowed function checks a phone number against our whitelist and returns either
true, which means the phone number is whitelisted, or false, which means it's not.

The is_banned function checks whether the phone number is in the $blacklist array.

When a message is received, we first check whether the caller is in the blacklist and if so, we
don't go any further.

We then check whether the caller is in the whitelist and if so, then we skip the profanity and
other checks and just add the photo.

12
Call Queuing

In this chapter, we will cover:

 f Adding incoming callers to a call queue

 f Obtaining the average wait time for call queues

 f Setting a maximum queue size

 f Connecting the first caller in the queue

Introduction
Call queues provide you with an easy way to manage and route inbound phone calls to agents.

If at all you deal with help desks, call centers, or even sales systems, then you have a need
for call queues. This chapter will walk you through the various ways in which you can use the
Twilio call queue system.

Today, we're going to build a couple of different call queue solutions. Our first solution will be
building a simple call queuing system, which will add incoming calls to a queue. Then, when
the agents call in, we'll connect the caller to that agent.

Then, we'll build a monitor to show how many callers are in a queue and the average wait time.

After that, we'll cover how to change the maximum queue size of a call queue from the default
value of 100 to 150.

Finally, we'll build a second queuing system that will add the incoming callers to a queue, and
then forward those calls to a number we've set up, where the agents will talk to them.

Call Queuing

280

Adding incoming callers to a call queue
In this recipe, we're going to set up a simple call queue. We're going to have this work with
two separate numbers: one number is the number that the callers will call on and a second
number will handle the agents who call in.

Callers will get placed in a queue, and when an agent calls the agent number, they will be
connected to the first caller who is waiting to speak to someone.

Getting started
The complete code for this recipe can be found in the Code/Recipe1/ folder.

How to do it…
OK, let's set up our listener.php file to place all incoming calls in a queue and agent.php
to connect our agents to callers by performing the following steps:

1. Download the Twilio Helper Library available at https://github.com/twilio/
twilio-php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your web server using the following code:
 <?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $callqueue = 'Twilio Cookbook'; // YOUR CALL QUEUE
 ?>

4. Upload listener.php to your web server using the following code:
<?php
 include("config.php");

 # Include Twilio PHP helper library.
 require('Services/Twilio.php');

 # Tell Twilio to expect some XML
 header('Content-type: text/xml');

 # Create response object.
 $response = new Services_Twilio_Twiml();

 $response->enqueue($callqueue);

 # Print TwiML
 print $response;

Chapter 12

281

5. Create a file called agent.php using the following code:
<?php
 include("config.php");

 # Include Twilio PHP helper library.
 require('Services/Twilio.php');

 # Tell Twilio to expect some XML
 header('Content-type: text/xml');

 # Create response object.
 $response = new Services_Twilio_Twiml();

 # Dial into the Queue we placed the caller into to connect
 agent to
 # first person in the Queue.
 $dial = $response->dial();
 $dial->queue($callqueue);

 # Print TwiML
 print $response;

6. Next, we have to point your Twilio phone number to listener.php, as shown in the
following screenshot:

Call Queuing

282

7. Insert the URL in the box for Voice, which is shown on the page in the preceding
screenshot. Then, any calls that you receive on this number will be processed via
listener.php.

8. Finally, we have to point your agent's Twilio phone number to agent.php as shown in
the following screenshot:

9. Insert the URL in the box for Voice on this page. Then, any calls that you receive on
this number will be processed via agent.php.

How it works…
In steps 1 and 2, we downloaded and set up our Twilio PHP library.

In step 3, we set up our config.php file with our Twilio settings.

In step 4, we uploaded listener.php, which handles calls from our customers and places
them into a call queue.

In step 5, we uploaded agent.php, which handles calls from agents and connects them to
customers waiting in the call queue.

In step 6, we set up our Twilio phone number that receives incoming calls and adds them
to a queue.

Finally, in steps, 7, 8, and 9, we added agent.php to a phone number to connect our agents
to any callers waiting in a queue.

Chapter 12

283

This is a two-prong system. Firstly, any incoming caller is placed inside a call queue. Secondly,
any agent who calls is connected to the first caller waiting to talk to an agent.

Obtaining the average wait time for call
queues

We're going to set up a page that we'll use to display a list of call queues. We will also find out
the number of callers in each queue and the average wait time to connect to an agent.

Getting started
The complete code for this recipe can be found in the Code/Recipe2/ folder.

How to do it…
In this section, we're going to set up a page that will show us our call queues and how many
callers are on hold, as well as how long they are estimated to wait for before they speak to an
agent. Perform the following steps:

1. Download the Twilio Helper Library available at https://github.com/twilio/
twilio-php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your web server using the following code:
 <?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 ?>

4. Upload wait-times.php to your web server using the following code:

<?php
 include("config.php");
 # Include Twilio PHP helper library.
 require('Services/Twilio.php');

 $client = new Services_Twilio($accountsid, $authtoken);

 $queues = $client->account->queues->getIterator(0, 50);
 ?>
 <table width=100%>
 <thead>
 <tr>
 <th>Sid</th>

Call Queuing

284

 <th>Friendly Name</th>
 <th>Calls Currently In Queue</th>
 <th>Average Wait Time</th>
 </tr>
 </thead>
 <tbody>
<?php
 foreach ($queues as $queue) {
?>
 <tr>
 <td><?= $queue->sid?></td>
 <td><?= $queue->friendly_name?></td>
 <td><?= $queue->current_size?></td>
 <td><?= $queue->average_wait_time?></td>
 </tr>
<?php
 }
?>
 </tbody>
 </table>

How it works…
In steps 1 and 2, we downloaded and set up our Twilio PHP library.

In step 3, we set up our config.php file with our Twilio settings.

Finally, in step 4, we uploaded wait-times.php, which displays the list of call queues, the
number of callers currently on the queue, and the average wait time.

This is handy in a call center-type environment, where a supervisor may want to check the
status of a call queue or queues, depending on how it is set up.

Setting a maximum queue size
If you deal with large call volumes, it's nice to be able to set a queue size. The default
maximum queue size is 100, and the maximum queue size it can be set to default is 1000.

Getting started
The complete code for this recipe can be found in the Code/Recipe3/ folder.

Chapter 12

285

How to do it…
We're going to set up this recipe to take a passed sid queue. From there, we will change the
maximum queue size from the default value of 100 to 150 callers instead.

Download the Twilio Helper Library available at https://github.com/twilio/twilio-
php/zipball/master and unzip it. Now perform the following steps.

1. Upload the Services/ folder to your website.

2. Upload config.php to your web server using the following code:
 <?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 ?>

3. Upload max-size.php to your web server using the following code:

<?php
 include("config.php");
 # Include Twilio PHP helper library.
 require('Services/Twilio.php');

 $client = new Services_Twilio($accountsid, $authtoken);

 $queue = $client->account->queues-
 >get("QU32a3c49700934481addd5ce1659f04d2");
 $queue->update(array(
 "MaxSize" => "150"
));
 echo $queue->average_wait_time;

You can get the sid queue from the wait time monitor in the previous recipe.

How it works…
In steps 1 and 2, we downloaded and set up our Twilio PHP library.

In step 3, we set up our config.php file with our Twilio settings.

Finally, in step 4, we uploaded max-size.php. This lets us take a sid queue, which we
displayed in our previous recipe, and change the maximum queue size from the default value
of 100 to 150.

Call Queuing

286

Connecting the first caller in the queue
Next, we're going to build on our first call queue system and a proper queue manager.

For this, we're going to create our queue a little differently; first, we want to create the queue
in advance so that we can get the queue SID. You can also use a queue you previously created
using the wait-times.php recipe.

This queue will also work by calling an agent directly rather than having an agent call in, and
once they finish their call, the agent will then be connected to the next caller in the queue.

Getting started
The complete code for this recipe can be found in the Code/Recipe4/ folder.

How to do it…
OK, let's set up our files to place all incoming calls in a queue and then call the agent, by
performing the following steps:

1. Download the Twilio Helper Library available at https://github.com/twilio/
twilio-php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your web server using the following code:
 <?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $callqueue = 'Twilio Cookbook'; // YOUR CALL QUEUE
 $callqueue_sid = 'QU73dd3cc19e0149658c484a7064a186e1'; //
 YOUR CALL QUEUE SID
 $toNumber = '' // YOUR PHONE NUMBER TO CALL
 ?>

4. Upload create-queue.php to your web server using the following code:
<?php
 include("config.php");

 # Include Twilio PHP helper library.
 require('Services/Twilio.php');

 $client = new Services_Twilio($accountsid, $authtoken);

Chapter 12

287

 $queue = $client->account->queues->create($callqueue,
 array());
 echo $queue->sid;

This will create a call queue with the name we stored in $callqueue and return a
sid queue

5. Update the $callqueue_sid variable in config.php with this sid value.

6. Upload listener.php to your web server using the following code:
<?php
 include("config.php");
 header('Content-type: text/xml');
?>
<Response>
 <Say>You will now be placed on hold to wait for the
 first available operator.</Say>
 <Dial>
 <Queue url="agent.php"><?= $callqueue ?></Queue>
 </Dial>
</Response>

7. Create a file called agent.php using the following code:
<?php
 include("config.php");

 # Include Twilio PHP helper library.
 require('Services/Twilio.php');

 header('Content-type: text/xml');
?>
<Response>
<Say>Thank you for waiting. You will now be connected to an
 agent.</Say>
<Dial action="next-call.php">
<Number><?= $toNumber ?>></Number>
</Dial>
</Response>

8. Create a file called next-call.php using the following code:
<?php
 include("config.php");

 # Include Twilio PHP helper library.
 require('Services/Twilio.php');

Call Queuing

288

 include 'queue.class.php';

 header('Content-type: text/xml');

 $url = @($_SERVER["HTTPS"] != 'on') ?
 'http://'.$_SERVER["SERVER_NAME"] :
 'https://'.$_SERVER["SERVER_NAME"];
 $url .= ($_SERVER["SERVER_PORT"] !== 80) ?
 ":".$_SERVER["SERVER_PORT"] : "";
 $url .= $_SERVER["REQUEST_URI"];
 $url = dirname(($url));

 $queue = new QueueManager($accountsid, $authtoken,
 $callqueue_sid);
 $queue->connectNextCaller($url . '/agent.php');

?>
<Response />

9. Next, upload a file called queue.class.php using the following code:
<?php
 class QueueManager {
 protected $twilio = null;
 protected $queue = null;

 public function __construct($accountsid, $authtoken,
 $callqueue_sid='') {
 $this->twilio = new Services_Twilio($accountsid,
 $authtoken);
 if(isset($callqueue_sid) && !empty($callqueue_sid
)){
 $this->queue = $this->twilio->account->queues->get(
 $callqueue_sid);
 }else{
 $this->loadFirstQueue();
 }
 }

 public function loadFirstQueue() {
 //API call
 $queues = $this->twilio->account->queues;
 foreach($queues as $queue) {
 $this->queue = $queues;
 break;

Chapter 12

289

 }
 }

 public function getMembers() {
 return $this->queue->members;
 }

 public function getCurrentWaitTime() {
 return $this->queue->average_wait_time;
 }

 public function getCurrentOnHoldCount() {
 return $this->queue->current_size;
 }

 public function connectNextCaller($destinationUrl) {
 $first = $this->queue->members->front();

 //API call
 $first->dequeue($destinationUrl, 'POST');
 }
 }

10. Next, we have to point your Twilio phone number to listener.php, as shown in the
following screenshot:

Insert the URL in the box for Voice Request URL on this page. Then, any calls that you receive
on this number will be processed via listener.php.

Call Queuing

290

How it works…
In steps 1 and 2, we downloaded and set up our Twilio PHP library.

In step 3, we set up our config.php file with our Twilio settings.

In step 4, we uploaded create-queue.php, which we used to create a call queue.

In step 5, we uploaded listener.php, which takes all incoming calls and stores them
in a queue.

In steps 6 and 7, we created agent.php and next-call.php, which take the first caller in
the queue and calls the agent we specified in $toNumber. We then called next-call.php,
which takes the next caller and repeats the process again.

In step 8, we created our queue.class.php, which is the queue manager class we use to
handle the connections. This class can grab a queue by one of the two methods. We can pass
a sid queue, or we can grab the first queue with active callers in our list of queues.

Finally, we set up our Twilio phone number to receive incoming calls and add them to a queue.

The end result is that we have a queuing system that calls agents when a call comes in.
Once that call is done, it connects the agent to the next caller in the queue.

This lets us handle our call queue easily. With everything else we've covered in this
chapter, you have a solution that is easy to work with while dealing with a help desk
or a call center-type situation.

You'll notice that agent.php is called something slightly different in this recipe than in the
first recipe; rather than having an agent call in, we instead have the listener.php file call
agent.php. When a caller is available in the queue, we then pass the phone number we
stored in the $toNumber variable in config.php. Once the call is done, we then trigger the
next-call.php file and pass the next caller in the queue onto the agent.

13
Working with
Twilio Client

In this chapter, we will cover the following topics:

 f Setting up the client

 f Receiving incoming calls in the browser

 f Making outgoing calls from the browser

 f Making browser-to-browser calls

 f Displaying availability

Introduction
Twilio Client is a really handy resource. We've touched on it briefly in other chapters as we've
moved along the book, and now we're going to focus on it fully.

With Twilio Client, you can turn any web page into a phone.

Setting up the client
In this recipe, we're going to set up a simple Twilio Client app.

We'll set up our app to let you make a call by pushing a button. For now, the call will just be a
welcome message.

Working with Twilio Client

292

How to do it…
This first recipe will set up a basic Twilio Client app in the following manner:

1. First, since this recipe is using Twilio Client, you need to set up a TwiML app under
your account as shown in the following screenshot:

2. Click on the Create TwiML App button and enter a name for your app. Leave the
Voice Request URL field empty for now; just add a name in the Friendly Name field
and click on Save Changes as shown in the following screenshot:

3. Now, go back to the application list, and you will see your new application. Look at the
line directly beneath the name of your application. That is your application SID; copy
it as you will need it for this recipe.

Chapter 13

293

4. Download the Twilio Helper Library available at https://github.com/twilio/
twilio-php/zipball/master and unzip it.

5. Upload the Services/ folder to your website.

6. .Upload config.php to your web server using the following code:
<?php
$accountsid = ''; // YOUR TWILIO ACCOUNT SID
$authtoken = ''; // YOUR TWILIO AUTH TOKEN
$appsid = ''; // YOUR TWILIO APP SID
?>

7. Upload hello.php to your web server using the following code:
<?php
 include("config.php");
 include 'Services/Twilio/Capability.php';

 $capability = new Services_Twilio_Capability($accountsid,
 $authtoken);
 $capability->allowClientOutgoing($appsid);
 $token = $capability->generateToken();
?>
<!DOCTYPE html>
<html>
<head>
 <title>Hello Client</title>
 <script type="text/Javascript" src=
 "//static.twilio.com/libs/twiliojs/1.1/twilio.min.js">
 </script>
 <script type="text/Javascript" src=
 "https://ajax.googleapis.com/ajax/libs/jquery/
 1.6.2/jquery.min.js">
</script>
<?php include("clientjs.php");?>
</head>
<body>
 <button class="call" onclick="call();">Call</button>

Working with Twilio Client

294

 <button class="hangup" onclick="hangup();">Hangup
 </button>
 <div id="log"></div>
</body>
</html>

This sets up our base client interface and gets the token we will use for our app.

8. Upload clientjs.php to your web server using the following code:
<script type="text/Javascript">
 Twilio.Device.setup("<?php echo $token; ?>");

 Twilio.Device.ready(function (device) {
 $("#log").text("Ready");
 });

 Twilio.Device.error(function (error) {
 $("#log").text("Error: " + error.message);
 });

 Twilio.Device.connect(function (conn) {
 $("#log").text("Successfully established call");
 });

 Twilio.Device.disconnect(function (conn) {
 $("#log").text("Call ended");
 });

 function call() {
 Twilio.Device.connect();
 }

 function hangup() {
 Twilio.Device.disconnectAll();
 }
</script>

The preceding code is our base Twilio Client code; it sets up instructions on what our
app will do when it talks to Twilio.

In this case, we tell it to update div with the ID "log" when we are ready to make
calls, when we make a call, and when the call is ended.

Chapter 13

295

9. Open the clientjs.php file in your web server, and you will see a button to begin
a call. Click on the button to begin the call, and you will be prompted to allow Twilio
Client to access your microphone. Click on allow. When you make the call, you will
hear a welcome message.

10. You can then click on the Hangup button and hang up the call.

How it works…
In steps 1, 2, and 3, we set up a TwiML app in our Twilio account.

In steps 4 and 5, we downloaded and set up our Twilio PHP library.

In step 6, we set up our config.php file with our Twilio settings.

In step 7, we uploaded hello.php, which is our Twilio Client app.

In step 8, we uploaded our clientjs.php file, which contains our Twilio Client JavaScript
code. This code is used to handle the process of talking to Twilio from our web app.

This is a basic example that allows you to make a call and hang up. In the upcoming recipes,
we'll have a look at receiving incoming calls and making outgoing calls.

The complete code for this recipe can be found in the Recipe1 folder under Code.

Receiving incoming calls in the browser
Now that you know how to place and disconnect calls from the browser, it's time for your
browser to start receiving incoming calls. By the end of this recipe, you will be able to make a
call into your browser from your phone.

Getting Started
We're going to set up our Twilio Client app to accept incoming calls. This involves making
changes to our Twilio app in our Twilio account.

To begin receiving incoming calls, we have to set up the Twilio Client app by performing the
following steps:

1. Give the browser session a client name. The browser will use this name when it
registers itself with Twilio.

2. Set up Twilio Client to notify your browser session about incoming connections.

3. Write a TwiML code that directs incoming calls to your browser session.

The complete code for this recipe can be found in the Recipe1 folder under Code.

Working with Twilio Client

296

How to do it…
We will be implementing the following steps to set up our own app to allow incoming calls into
our browser:

1. Firstly, since this is using the Twilio Client, you need to set up a TwiML app under your
account; you can do this by logging in to your account and going to Dev Tools from
the top menu as shown in the following screenshot:

2. Click on the Create TwiML App button and enter a name for your app. Add a URL in
the Voice Request URL field to client.php on your web server as shown in the
following screenshot:

Chapter 13

297

3. Now, go back to the application list, and you will see your new application. Look at the
line directly beneath the name of your app. That is your app SID; copy it as you will
need it for this recipe:

4. Download the Twilio Helper Library available at https://github.com/twilio/
twilio-php/zipball/master and unzip it.

5. Upload the Services/ folder to your website.

6. Upload config.php to your web server using the following code:
<?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $appsid = ''; // YOUR TWILIO APP SID
 $appname = ''; // YOUR CLIENT NAME
?>

7. Upload hello.php to your web server using the following code:
<?php
 include("config.php");
 include 'Services/Twilio/Capability.php';

 $capability = new Services_Twilio_Capability($accountsid,
 $authtoken);
 $capability->allowClientOutgoing($appsid);
 $capability->allowClientIncoming($appname);
 $token = $capability->generateToken();
?>
<!DOCTYPE html>
<html>
<head>
 <title>Hello Client</title>
 <script type="text/Javascript" src=
 "//static.twilio.com/libs/twiliojs/1.1/twilio.min.js">
 </script>
 <script type="text/Javascript" src="https://
 ajax.googleapis.com/ajax/libs/jquery/
 1.6.2/jquery.min.js">
</script>

Working with Twilio Client

298

<?php include("clientjs.php"); ?>
</head>
<body>
 <button class="call" onclick="call();">Call</button>
 <button class="hangup" onclick="hangup();">Hangup
 </button>
 <div id="log"></div>
</body>
</html>

We've once again set up our client interface. When we set up our token, we also
specified to allow the app to accept incoming calls

8. Upload clientjs.php to your web server using the following code:
 <script type="text/javascript">
 Twilio.Device.setup("<?php echo $token; ?>");

 Twilio.Device.ready(function (device) {
 $("#log").text("Ready");
 });

 Twilio.Device.error(function (error) {
 $("#log").text("Error: " + error.message);
 });

 Twilio.Device.connect(function (conn) {
 $("#log").text("Successfully established call");
 });

 Twilio.Device.disconnect(function (conn) {
 $("#log").text("Call ended");
 });

 Twilio.Device.incoming(function (conn) {
 $("#log").text("Incoming connection from " +
 conn.parameters.From);
 conn.accept();
 });

 function call() {
 Twilio.Device.connect();
 }

 function hangup() {

Chapter 13

299

 Twilio.Device.disconnectAll();
 }
</script>

This JavaScript code may look similar to the last recipe, but we've also added a
connection for incoming calls, which will display a message in the log div and also
accept the call.

9. Upload client.php to your web server using the following code:
<?php
 include("config.php");
 header('Content-type: text/xml');
?>
<Response>
 <Dial>
 <Client><?php echo $appname; ?></Client>
 </Dial>
</Response>

10. Configure a Twilio number to use the application as shown in the following screenshot:

How it works…
In steps 1, 2, and 3, we set up a TwiML app inside our Twilio account.

In steps 4 and 5, we downloaded and set up our Twilio Helper Library.

In step 6, we set up our config.php file with our Twilio settings.

Working with Twilio Client

300

In step 7, we uploaded hello.php, which is the interface for our Twilio Client app.

In step 8, we uploaded clientjs.php, which handles the process of talking to Twilio from
the browser.

In step 9, we uploaded client.php, which receives incoming calls and connects to our
browser session.

In step 10, we connected a Twilio number to our application.

Now, whenever a user calls on the number we have set up, it will connect to our Twilio app,
which will in turn connect to the Twilio Client running in our browser and display the incoming
call on your browser.

Making outgoing calls from the browser
You have used your Twilio Client app to receive incoming calls directly to your browser and
have a conversation. Now, let's make this application more useful by letting you make
outgoing phone calls from your web browser.

Getting Started
We're going to set up our Twilio Client app to allow our user to make outgoing calls directly
from the browser.

The complete code for this recipe can be found in the Recipe1 folder under Code.

How to do it…
Let's set up our client to make outgoing calls by performing the following steps:

1. Download the Twilio Helper Library available at https://github.com/twilio/
twilio-php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. . Upload config.php to your web server using the following code:
<?php
$accountsid = ''; // YOUR TWILIO ACCOUNT SID
$authtoken = ''; // YOUR TWILIO AUTH TOKEN
$appsid = ''; // YOUR TWILIO APP SID
$appname = ''; // YOUR CLIENT NAME
$fromNumber = ''; // YOUR TWILIO NUMBER (THIS MUST BE A //NUMBER
LINKED TO YOUR ACCOUNT)
?>

Chapter 13

301

4. Upload hello.php to your web server using the following code:
<?php
 include("config.php");
 include 'Services/Twilio/Capability.php';

 $capability = new Services_Twilio_Capability($accountsid,
 $authtoken);

 $capability->allowClientOutgoing($appsid);
 $capability->allowClientIncoming($appname);
 $token = $capability->generateToken();
?>
<!DOCTYPE html>
<html>
<head>
 <title>My Client</title>
 <script type="text/Javascript" src=
 "//static.twilio.com/libs/twiliojs/1.1/twilio.min.js">
 </script>
 <script type="text/Javascript" src="https:
 //ajax.googleapis.com/ajax/libs/jquery
 /1.6.2/jquery.min.js">
</script>
<?php include("clientjs.php");
</head>
<body>
 <button class="call" onclick="call();">Call</button>
 <button class="hangup" onclick="hangup();">Hangup
 </button>

 <input type="text" id="number" name="number"
 placeholder="Enter a phone number to call"/>

 <div id="log"></div>
</body>
</html>

5. Upload clientjs.php to your web server using the following code:
<script type="text/Javascript">
 Twilio.Device.setup("<?php echo $token; ?>");

 Twilio.Device.ready(function (device) {

Working with Twilio Client

302

 $("#log").text("Ready");
 });

 Twilio.Device.error(function (error) {
 $("#log").text("Error: " + error.message);
 });

 Twilio.Device.connect(function (conn) {
 $("#log").text("Successfully established call");
 });

 Twilio.Device.disconnect(function (conn) {
 $("#log").text("Call ended");
 });

 Twilio.Device.incoming(function (conn) {
 $("#log").text("Incoming connection from " +
 conn.parameters.From);
 conn.accept();
 });

 function call() {
 params = {"PhoneNumber": $("#number").val()};
 Twilio.Device.connect(params);
 }

 function hangup() {
 Twilio.Device.disconnectAll();
 }
</script>

6. Upload client.php to your web server using the following code:

<?php
 include("config.php");
 header('Content-type: text/xml');

 // put your default Twilio Client name here, for when a phone
number isn't given
 $number = $appname;

 // get the phone number from the page request parameters, if
given
 if (isset($_REQUEST['PhoneNumber'])) {

Chapter 13

303

 $number = htmlspecialchars($_REQUEST['PhoneNumber']);
 }
 // wrap the phone number or client name in the appropriate TwiML
verb
 // by checking if the number given has only digits and format
symbols
 if (preg_match("/^[\d\+\-\(\)]+$/", $number)) {
 $numberOrClient = "<Number>" . $number . "</Number>";
 } else {
 $numberOrClient = "<Client>" . $number . "</Client>";
 }
?>
<Response>
 <Dial callerId="<?php echo $fromNumber ?>">
 <?php echo $numberOrClient ?>
 </Dial>
</Response>

How it works…
In steps 1 and 2, we downloaded and set up our Twilio PHP library.

In step 3, we set up our config.php file with our Twilio settings.

In step 4, we uploaded hello.php, which is our interface to our Twilio Client app.

In step 5, we uploaded clientjs.php, which handles the communications between our
Twilio Client app and Twilio.

In step 6, we uploaded client.php.

We've just enhanced our client once again to also allow outgoing calls.

You'll notice that client.php has been changed to work twofold. For incoming calls, it
outputs TwiML for the client, and for outgoing calls, it outputs TwiML for making calls.

Making browser-to-browser calls
Our final recipe will make calls from one browser client to another.

For this to work, we need to have two different web browser windows open. Of course, each
web browser needs to be registered under a separate name. For this example, we'll have one
browser window that is registered as Jenny and another one as Tommy.

Working with Twilio Client

304

Getting Started
We're going to set up our client to allow you to talk to other browser sessions as well as make
calls from actual physical telephones.

We're storing the client name inside a session in this recipe, so to test it on the same computer,
you should make sure that you use two different browsers, for example Chrome and Safari.

The complete code for this recipe can be found in the Recipe1 folder under Code.

How to do it…
This recipe will allow us to set up browser-to-browser calls by performing the following steps:

1. Download the Twilio Helper Library available at https://github.com/twilio/
twilio-php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your web server using the following code:
 <?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $appsid = ''; // YOUR TWILIO APP SID
 $fromNumber = ''; // YOUR TWILIO NUMBER
 ?>

4. Upload hello.php to your web server using the following code:
<?php
 session_start();
 include("config.php");
 include 'Services/Twilio/Capability.php';

 if(isset($_POST['myname'])){
 $_SESSION['myname'] = str_replace("
 ","_",strtolower($_POST['myname']));
 }

 if(isset($_SESSION['myname'])){
 $capability = new
 Services_Twilio_Capability($accountsid, $authtoken);

 $capability->allowClientOutgoing($appsid);
 $capability->allowClientIncoming($_SESSION['myname']
);

Chapter 13

305

 $token = $capability->generateToken();
 }
?>
<!DOCTYPE html>
<html>
<head>
 <title>My Client</title>
<?php if(isset($_SESSION['myname'])){ ?>
 <script type="text/Javascript" src="
 //static.twilio.com/libs/twiliojs/1.1/twilio.min.js">
 </script>
 <script type="text/Javascript" src="
 https://ajax.googleapis.com/ajax/libs/jquery/
 1.6.2/jquery.min.js"></script>
<?php include("clientjs.php");
<?php } ?>
</head>
<body>
<?php if(!isset($_SESSION['myname'])){ ?>
 <form method="POST">
 <input type="text" name="myname" placeholder="Enter your
 name" />
 <button type="submit">Go</button>
 </form>
<?php }else{ ?>
 <button class="call" onclick="call();">Call</button>
 <button class="hangup" onclick="hangup();">Hangup
 </button>

 <input type="text" id="number" name="number" placeholder=
 "Enter a phone number or client to call"/>

 <div id="log"></div>
<?php } ?>
</body>
</html>

5. Upload clientjs.php to your web server using the following code:
<script type="text/Javascript">
 Twilio.Device.setup("<?php echo $token; ?>");

 Twilio.Device.ready(function (device) {
 $("#log").text("Ready");
 });

Working with Twilio Client

306

 Twilio.Device.error(function (error) {
 $("#log").text("Error: " + error.message);
 });

 Twilio.Device.connect(function (conn) {
 $("#log").text("Successfully established call");
 });

 Twilio.Device.disconnect(function (conn) {
 $("#log").text("Call ended");
 });

 Twilio.Device.incoming(function (conn) {
 $("#log").text("Incoming connection from " +
 conn.parameters.From);
 conn.accept();
 });

 function call() {
 params = {"PhoneNumber": $("#number").val(), ,'myname':
 <?php echo $_SESSION['myname']; ?>};

 Twilio.Device.connect(params);
 }

 function hangup() {
 Twilio.Device.disconnectAll();
 }
</script>

6. Upload client.php to your web server using the following code:

<?php
 include("config.php");
 header('Content-type: text/xml');

 // put your default Twilio Client name here, for when a
 //phone number isn't given
 $number = $_REQUEST['myname'];

 // get the phone number from the page request parameters,
 //if given
 if (isset($_REQUEST['PhoneNumber'])) {
 $number = htmlspecialchars($_REQUEST['PhoneNumber']);
 }

Chapter 13

307

 // wrap the phone number or client name in the
 //appropriate TwiML verb
 // by checking if the number given has only digits and
 format symbols
 if (preg_match("/^[\d\+\-\(\)]+$/", $number)) {
 $numberOrClient = "<Number>" . $number . "</Number>";
 } else {
 $numberOrClient = "<Client>" . $number . "</Client>";
 }
?>
<Response>
 <Dial callerId="<?php echo $fromNumber ?>">
 <?php echo $numberOrClient ?>
 </Dial>
</Response>

How it works…
In steps 1 and 2, we downloaded and set up our Twilio PHP library.

In step 3, we set up our config.php file with our Twilio settings.

In step 4, we uploaded hello.php.

In step 5, we uploaded client.php.

We can now accept incoming calls, make outgoing calls, and call other users using
browser-to-browser calling.

Displaying availability
Great, now you're able to make calls from one browser to another. Your application is starting
to look pretty sweet. There's only one thing still missing though. How will you figure out who
is available to receive an incoming call? Furthermore, how will you keep this list updated as
clients connect and disconnect?

Getting Started
We can show a list of people who are available to be called in a few easy steps as follows:

1. Register a handler function for presence events with Twilio.Device.presence().

2. When a presence event is received, add or remove that client from a list in the UI.

Working with Twilio Client

308

3. When the client name is clicked in the list, invoke the previously written
call() function.

The complete code for this recipe can be found in the Recipe1 folder under Code.

How to do it…
We're going to display a list of clients who are connected to the same Twilio app, and then we
will make a call to them by performing the following steps:

1. Download the Twilio Helper Library available at https://github.com/twilio/
twilio-php/zipball/master and unzip it.

2. Upload the Services/ folder to your website.

3. Upload config.php to your web server using the following code:
 <?php
 $accountsid = ''; // YOUR TWILIO ACCOUNT SID
 $authtoken = ''; // YOUR TWILIO AUTH TOKEN
 $appsid = ''; // YOUR TWILIO APP SID
 ?>

4. Upload hello.php to your web server using the following code:
<?php
 session_start();
 include("config.php");
 include 'Services/Twilio/Capability.php';

 if(isset($_REQUEST['myname'])){
 $_SESSION['myname'] = str_replace("
 ","_",strtolower($_REQUEST['myname']));
 }

 // get the Twilio Client name from the page request
 //parameters, if given
 if (isset($_REQUEST['client'])) {
 // trip spaces from the name, spaces are not good...
 $_SESSION['myname'] = str_replace("
 ","_",strtolower($_POST['client']));
 }

 if(isset($_SESSION['myname'])){
 $capability = new Services_Twilio_Capability
 ($accountsid, $authtoken);

Chapter 13

309

 $capability->allowClientOutgoing($appsid);
 $capability->allowClientIncoming($_SESSION['myname']
);
 $token = $capability->generateToken();
 }
?>
<!DOCTYPE html>
<html>
<head>
 <title>My Client</title>
<?php if(isset($_SESSION['myname'])){ ?>
 <script type="text/javascript" src="
 //static.twilio.com/libs/twiliojs/1.1/twilio.min.js">
 </script>
 <script type="text/javascript" src=
 "https://ajax.googleapis.com/ajax/libs/jquery/
 1.6.2/jquery.min.js"></script>
 <?php include("clientjs.php") ?>
<?php } ?>
</head>
<body>
<?php if(!isset($_SESSION['myname'])){ ?>
 <form method="POST">
 <input type="text" name="myname" placeholder="Enter your
 name" />
 <button type="submit">Go</button>
 </form>
<?php }else{ ?>
 <button class="call" onclick="call();">Call</button>
 <button class="hangup" onclick="hangup();">Hangup
 </button>

 <input type="text" id="number" name="number" placeholder
 ="Enter a phone number or client to call"/>

 <div id="log">Loading pigeons...</div>

 <ul id="people">
<?php } ?>
</body>
</html>

Working with Twilio Client

310

5. Upload clientjs.php to your web server using the following code:
<script type="text/Javascript">
 Twilio.Device.setup("<?php echo $token; ?>");
 Twilio.Device.ready(function (device) {
 $("#log").text("Client '<?php echo $clientName ?>' is
 ready");
 });
 Twilio.Device.error(function (error) {
 $("#log").text("Error: " + error.message);
 });
 Twilio.Device.connect(function (conn) {
 $("#log").text("Successfully established call");
 });
 Twilio.Device.disconnect(function (conn) {
 $("#log").text("Call ended");
 });
 Twilio.Device.incoming(function (conn) {
 $("#log").text("Incoming connection from " +
 conn.parameters.From);
 conn.accept();
 });
 Twilio.Device.presence(function (pres) {
 if (pres.available) {
 $("", {id: pres.from, text: pres.from}).
 click(function () {
 $("#number").val(pres.from);
 call();
 }).prependTo("#people");
 }else {
 $("#" + pres.from).remove();
 }
 });

 function call() {
 params = {"PhoneNumber": $("#number").val()};
 Twilio.Device.connect(params);
 }
 function hangup() {
 Twilio.Device.disconnectAll();
 }
</script>

Chapter 13

311

6. Upload client.php to your web server using the following code:
<?php
 include("config.php");
 header('Content-type: text/xml');

 // put your default Twilio Client name here, for when a
 //phone number isn't given
 $number = $_REQUEST['myname'];

 // get the phone number from the page request parameters,
 //if given
 if (isset($_REQUEST['PhoneNumber'])) {
 $number = htmlspecialchars($_REQUEST['PhoneNumber']);
 }
 // wrap the phone number or client name in the
 //appropriate TwiML verb
 // by checking if the number given has only digits and
 //format symbols
 if (preg_match("/^[\d\+\-\(\)]+$/", $number)) {
 $numberOrClient = "<Number>" . $number . "</Number>";
 } else {
 $numberOrClient = "<Client>" . $number . "</Client>";
 }
?>
<Response>
 <Dial callerId="<?php echo $fromNumber ?>">
 <?php echo $numberOrClient ?>
 </Dial>
</Response>

7. Open the client.php file in your web server, and you will see a button to make a
call. When you make the call, you will hear a welcome message.

8. You can then press the Hangup button and hang up the call.

How it works…
In steps 1 and 2, we downloaded and set up our Twilio PHP library.

In step 3, we set up our config.php file with our Twilio settings.

In step 4, we uploaded hello.php. This is our Twilio Client app, which will first prompt
you to enter your name and then display the phone app and a list of other browser sessions
that are online.

Working with Twilio Client

312

In step 5, we uploaded clientjs.php; this is our JavaScript, which talks to Twilio.

In step 5, we uploaded client.php, which handles any incoming calls to our app, whether it
is from a phone number or from another browser session.

We can now accept incoming calls, make outgoing calls, get a list of client names connected
to our Twilio app, and call other users using the browser-to-browser calling.

Index
Symbols
$callqueue_sid variable 287
$curtime variable 76
$pdo variable 51
$phonenumbers array 47
$toNumber variable 290

A
account usage

tracking 32-35
API

features 91
applets 216
Application Programming Interface. See API
availability status, for incoming call

setting up 307-311
average wait time, for call queues

estimating 283, 284

B
browser

incoming calls, receiving in 295-300
outgoing calls, making from 300

Browser Phone. See OpenVBX Browser Phone
browser-to-browser calls

about 303
setting up 304-307

bulk SMS
sending, to contact list 117, 118

C
caller ID routing plugin

building 238-243

call flows
testing 243-248

call-handling system
building 36-38

call log plugin
building 216-218

call logs, PBX
viewing 192-197

call queue
average wait time, estimating 283, 284
first caller, connecting 286-290
incoming callers, adding to 280-282

call screening 36
calls, IVR systems

logging 160
recording 158
reporting 160
screening 158

censorString function 271, 272
classifieds

searching, YQL used 101, 102
clean_number function 278
cleanVar() function 8
Click-to-call functionality

about 15
adding, to app 15, 16

company directory
setting up 21-26

company voice mailbox, IVR systems
messages, forwarding to 170

conference calling
about 69
callers, muting 88, 89
callers, unmuting 89
call, joining from web browser 80-83
call, monitoring 84-87

314

call, scheduling 70-73
conference, recording 78
conference, starting 76-78
text message, sending to all participants at

call time 74-76
conference call scheduler 70
Craigslist 91
Create TwiML App button 292, 296
custom phone number, PBX

purchasing 187-191
Custom Search Engine

creating 104

D
daemon() function 268
delete() method 180

E
emergency calling system

building 45-47

F
flows 215
functions.php file 94

G
get() method 180
get_query function 94
getResultFromYQL function 94
Google

about 91
searching, SMS used 104, 105

Google API Client
downloading, for PHP 104

Google API key
downloading 104

Google movie listing service
used, for searching local movie listings 100

group chats, SMS messages
receiving 125-128
sending 125-128

H
Hangup button 311
Highcharts PHP library

about 65
downloading 65
using 64

Highrise
URL 163

HighriseHQ contacts
looking up, on incoming calls 163

I
ImageFilter.class.php file 272
In Case Of Emergency (ICE) system 45
incoming callers

adding, to call queue 280-282
incoming calls

receiving, in browser 295-300
incoming phone calls, PBX

allowing 197-202
Interactive Voice Response systems. See IVR

systems
is_allowed function 278
is_banned function 278
IVR systems

about 153
calls, logging 160-162
calls, recording 158-160
calls, reporting 160-162
calls, screening 158-160
directions, acquiring 167
HighriseHQ contacts, looking up on incoming

calls 163-166
messages, forwarding company voice mailbox

170-175
setting up 154-157
SMS, sending to Salesforce.com contacts

176-178
uses 153

J
Jolt framework

downloading 180

315

L
latest headlines

getting, Yahoo News used 107
local businesses

searching, via text 93-96
searching, YQL service used 93

local movie listings
searching, Google movie listing service used

100, 101
local TV listings

getting, Rovi Corp API Key used 102-104
local weather lookup

performing, weather lookup API used 98, 99

M
maximum queue size

setting 284, 285
MediaUrl 250
Messaging Request URL box 254
MMS

about 249
messages, receiving 250

MMS messages
receiving 250-254

Multimedia Messaging Service. See MMS
mysql_* functions 50

O
OpenVBX

about 215
caller ID routing plugin, building 238
call flows, testing 243
call log plugin, building 216
installing 216
orders, tracking 231
searchable user directory, building 218
stripe payments, collecting 224

OpenVBX Browser Phone 243
orders

tracking 231-238
tracking, with SMS 118-125

order verification
adding 13-15

outgoing calls
making, from browser 300-303

outgoing phone calls, PBX
allowing 202-208

P
PBX

call logs, viewing 192-197
custom phone number, purchasing 187-191
incoming phone calls, allowing 197
outgoing phone calls, allowing 202-208
requisites 181
setting up 180-184
subaccount, deleting 208-214
subaccount, setting up 184-186

PDO
about 50
features 50

pdo.class.php file 50
phone call

recording 17-20
phone number

buying 39-42
photo gallery

blacklisting 273-278
whitelisting 273-278

PHP Data Objects. See PDO
PHP Highrise API

downloading 164
picture message gallery

about 259
creating 260-267
working 267, 268

picture messages
filtering 269-273
sending, from website 254-258

post() method 180
put() method 180

R
reminder system

another person, adding to reminder 148-152
building 136
reminders, scheduling via text 136-139
upcoming reminders, cancelling 144-147

316

upcoming reminders, notifying 139, 140
upcoming reminders, retrieving 141-144

response chart, surveys
building 64, 67

route() method 180
Rovi Corp API Key

downloading 103
used, for local TV listings 103

S
Salesforce.com

PHP toolkit, downloading from 177
SMS, sending to contacts 176
URL 176

scraping 100
searchable user directory

building 218-223
send_sms function 111
Share Photo button 260
Short Messaging Service. See SMS
Simple HTML Dom library

downloading 100
SMS 249
SMS messages

bulk SMS, sending to contact list 117, 118
forwarding, to another phone number 114-

116
group chats, receiving 125
group chats, sending 125
replying, from phone 111-113
sending, from website 110, 111
sending, in phone call 129, 130
used, for tracking orders 118-125

stock market
searching, Yahoo Finance used 106

Stripe API
downloading 224

stripe payments
collecting 224-231

subaccount, PBX
deleting 208-214
setting up 184-186

surveys
about 49
response chart, building 64, 67
sending, to users 58, 59

subscribing, enabling for users 52-54
survey tree, building 54-57
user commands, handling 62-64
user responses, handling 62
user response, tracking 60, 61

survey tree
building 54-57

T
Text-to-Speech

about 26-28
setting up 26-30

Twilio
account usage, tracking 32
call screening 36
conference calling 69
emergency calling system, building 45
MMS 249
phone number, buying 39
voicemail system, setting up 42

Twilio app
order verification, adding 13-15
phone call, recording 17
two-factor voice authentication, adding 6-10

Twilio Client
about 291
setting up 291-295

Twilio Client app. See Twilio Client
Twilio Helper Library

downloading 70
URL 293, 304

TwilioMMS class 258
Twilio SMS

used, for setting up two-factor authentication
10-13

two-factor authentication
adding, to a Twilio app 7-10
setting up, Twilio SMS used 10-12

U
upcoming reminders

cancelling 144
notifying 139
retrieving 141

use command 97

317

user_generate_token function 13
user response, surveys

handling 62-64
tracking 60, 61

V
voicemail system

setting up 42-45
Voice Request URL field 296

W
website

monitoring 130-133
picture messages, sending from 254-258
SMS messages, sending from 110, 111

Y
Yahoo Finance

about 91
used, for searching stock market 106
working 106

Yahoo HYPERLINK 107
Yahoo News 91
Yahoo Query Language. See YQL
Yahoo Weather 91
Yahoo weather lookup API

about 98
used, for local weather lookup 99

Yelp.com 91
Yelp.com API

used, for local lookup 93
YQL

about 92
URL 92
used, for searching classifieds 101

ywsid 97

Thank you for buying
Twilio Cookbook Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

RESTful Web Services with
Dropwizard
ISBN: 978-1-78328-953-0 Paperback: 112 pages

Over 20 recipes to help you build high-performance,
production-ready RESTful JVM-based backend services

1. Learn how to build and test your own
high-performance Web Service application.

2. Know more about creating and serving custom
database content with Web Services.

3. Gain insight on how to secure your Web Service.

RestKit for iOS
ISBN: 978-1-78216-370-1 Paperback: 118 pages

Link your apps and web services using RestKit

1. A step-by-step guide that goes beyond theory and
into practice.

2. Learn how to overcome hurdles that might pop up
along the way when using RestKit.

3. Learn how to integrate new frameworks into an
existing app.

Please check www.PacktPub.com for information on our titles

Developing RESTful Web
Services with Jersey 2.0
ISBN: 978-1-78328-829-8 Paperback: 98 pages

Create RESTful web services smoothly using the robust
Jersey 2.0 and JAX-RS APIs

1. Understand and implement the Jersey and JAX-RS
APIs with ease.

2. Construct top-notch server and client-side web
services.

3. Learn about Server sent events, for showing real-
time data.

Developing RESTful Services
with JAX-RS 2.0, WebSockets,
and JSON
ISBN: 978-1-78217-812-5 Paperback: 128 pages

A complete and practical guide to building RESTful Web
Services with the latest Java EE7 API

1. Learning about different client/server
communication models including but not
limited to client polling, Server-Sent Events and
WebSockets.

2. Efficiently use WebSockets, Server-Sent Events,
and JSON in Java EE applications.

3. Learn about JAX-RS 2.0 new features and
enhancements.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Into the Frying Pan
	Introduction
	Adding two-factor voice authentication to verify users
	Using Twilio SMS to set up two-factor authentication for secure websites
	Adding order verification
	Adding the Click-to-Call functionality to your website
	Recording a phone call
	Setting up a company directory
	Setting up Text-to-Speech

	Chapter 2: Now We're Cooking
	Introduction
	Tracking account usage
	Screening calls
	Buying a phone number
	Setting up a voicemail system
	Building an emergency calling system

	Chapter 3: Conducting Surveys
via SMS
	Introduction
	Why use PDO instead of the standard MySQL functions?
	Letting users subscribe to receive surveys
	Building a survey tree
	Sending a survey to your users
	Adding tracking for each user
	Listening to user responses and commands
	Building a chart of responses

	Chapter 4: Building a Conference Calling System
	Introduction
	Scheduling a conference call
	Sending an SMS to all participants at the time of the call
	Starting and recording a conference
	Joining a conference call from the web browser
	Monitoring the conference call
	Muting a participant

	Chapter 5: Combining Twilio with Other APIs
	Introduction
	Searching for local businesses via text
	Getting the local weather forecast
	Searching for local movie listings
	Searching for classifieds
	Getting local TV listings
	Searching Google using SMS
	Searching the stock market
	Getting the latest headlines

	Chapter 6: Sending and Receiving SMS Messages
	Introduction
	Sending a message from a website
	Replying to a message from the phone
	Forwarding SMS messages to another phone number
	Sending bulk SMS to a list of contacts
	Tracking orders with SMS
	Sending and receiving group chats
	Sending SMS messages in a phone call
	Monitoring a website

	Chapter 7: Building a Reminder System
	Introduction
	Scheduling reminders via text
	Getting notified when the time comes
	Retrieving a list of upcoming reminders
	Canceling an upcoming reminder
	Adding another person to a reminder

	Chapter 8: Building an IVR System
	Introduction
	Setting up IVRs
	Screening and recording calls
	Logging and reporting calls
	Looking up HighriseHQ contacts on incoming calls
	Getting directions
	Leaving a message
	Sending an SMS to your Salesforce.com contacts

	Chapter 9: Building Your Own PBX
	Introduction
	Getting started with PBX
	Setting up a subaccount for each user
	Letting a user purchase a custom phone number
	Allowing users to make calls from their
call logs
	Allowing incoming phone calls
	Allowing outgoing phone calls
	Deleting a subaccount

	Chapter 10: Digging into OpenVBX
	Introduction
	Building a call log plugin
	Building a searchable company directory
	Collecting Stripe payments
	Tracking orders
	Building a caller ID routing plugin
	Testing call flows

	Chapter 11: Sending and Receiving Picture Messages
	Introduction
	Receiving MMS messages
	Sending picture messages from a website
	Making the picture message gallery
	Filtering picture messages
	Blacklisting and whitelisting the submissions

	Chapter 12: Call Queuing
	Introduction
	Adding incoming callers to a call queue
	Obtaining average wait time for call queues
	Setting a maximum queue size
	Connecting the first caller in the queue

	Chapter 13: Working with
Twilio Client
	Introduction
	Setting up the client
	Receiving incoming calls in the browser
	Making outgoing calls from the browser
	Making browser-to-browser calls
	Displaying availability

	Index

